Numerische Mathematik

, Volume 132, Issue 3, pp 433–462 | Cite as

Intrinsic finite element methods for the computation of fluxes for Poisson’s equation

  • P. G. Ciarlet
  • P. CiarletJrEmail author
  • S. A. Sauter
  • C. Simian


In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved.


Elliptic boundary value problems Conforming and non-conforming finite element spaces Intrinsic formulation 

Mathematics Subject Classification



  1. 1.
    Abramowitz, M. , Stegun, I.A.: Handbook of mathematical functions. Applied mathematics series 55. National Bureau of Standards, U.S. Department of Commerce (1972)Google Scholar
  2. 2.
    Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44(1), 109–140 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arnold, D.N., Falk, R. S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47(2):281–354 (2010Google Scholar
  4. 4.
    Baran, Á., Stoyan, G.: Gauss-Legendre elements: a stable, higher order non-conforming finite element family. Computing 79(1), 1–21 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Brezzi , F., Fortin, M.: Mixed and hybrid finite element methods, vol 15. Springer-Verlag (1991)Google Scholar
  6. 6.
    Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland (1978)Google Scholar
  7. 7.
    Ciarlet, P.G., Ciarlet Jr, P.: Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models Methods Appl. Sci. 15(2), 259–271 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Ciarlet, P.G., Ciarlet Jr, P.: A new approach for approximating linear elasticity problems. C. R. Math. Acad. Sci. Paris Ser. I 346(5–6), 351–356 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Ciarlet, P.G., Ciarlet Jr, P.: Direct computation of stresses in planar linearized elasticity. Math. Models Methods Appl. Sci. 19(7), 1043–1064 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    P. Ciarlet, Jr., S. Sauter, and C. Simian. Non-Conforming Intrinsic Finite Elements for Elliptic Boundary Value Problems in Three Dimensions. Technical Report in preparation, 2015Google Scholar
  11. 11.
    Crouzeix, M., Falk, R.: Nonconforming finite elements for Stokes problems. Math. Comp. 186, 437–456 (1989)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. Revue Française d’Automatique, Informatique et Recherche Opérationnelle 3, 33–75 (1973)MathSciNetGoogle Scholar
  13. 13.
    Fortin, M., Soulie, M.: A nonconforming quadratic finite element on triangles. Int. J. Num. Methods Eng. 19, 505–520 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Lee, H., Sheen, D.: Basis for the quadratic nonconforming triangular element of Fortin and Soulie. Int. J. Num. Anal. Model. 2(4), 409–421 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mardare, S.: On Poincaré and de Rham’s theorems. Revue Roumaine de Mathématiques Pures et Appliquées 53(5–6), 523–541 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nédélec, J.-C.: Mixed finite elements in R\(^{3}\). Numer. Math. 35(3), 315–341 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Nédélec, J.-C.: A new family of mixed finite elements in R\(^3\). Numer. Math. 50(1), 57–81 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Schwab C.: \(p\)- and \(hp\)-finite element methods. In: Theory and applications in solid and fluid mechanics. The Clarendon Press, Oxford University Press, New York (1998)Google Scholar
  20. 20.
    Simian C.: Intrinsic discretization of linear elasticity. PhD thesis, University of Zürich (2013)Google Scholar
  21. 21.
    Stoyan, G., Baran, Á.: Crouzeix-Velte decompositions for higher-order finite elements. Comput. Math. Appl. 51(6–7), 967–986 (2006)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. G. Ciarlet
    • 1
  • P. CiarletJr
    • 2
    Email author
  • S. A. Sauter
    • 3
  • C. Simian
    • 4
  1. 1.Department of MathematicsCity University of Hong KongKowloonHong Kong
  2. 2.Laboratoire POEMS, UMR 7231 CNRS/ENSTA/INRIA, ENSTA ParisTech, 828, Boulevard des MaréchauxPalaiseau CedexFrance
  3. 3.Institut für MathematikUniversität ZürichZürichSwitzerland
  4. 4.Department of Computer ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations