Adaptive time discretization for retarded potentials


In this paper, we will present advanced discretization methods for solving retarded potential integral equations. We employ a \(C^{\infty }\)-partition of unity method in time and a conventional boundary element method for the spatial discretization. One essential point for the algorithmic realization is the development of an efficient method for approximation the elements of the arising system matrix. We present here an approach which is based on quadrature for (non-analytic) \(C^{\infty }\) functions in combination with certain Chebyshev expansions. Furthermore we introduce an a posteriori error estimator for the time discretization which is employed also as an error indicator for adaptive refinement. Numerical experiments show the fast convergence of the proposed quadrature method and the efficiency of the adaptive solution process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Bamberger, A., Duong, T.H.: Formulation Variationnelle Espace-Temps pur le Calcul par Potientiel Retardé de la Diffraction d’une Onde Acoustique. Math. Methods Appl. Sci. 8, 405–435 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. 2.

    Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47, 227–249 (2008)

    Article  MathSciNet  Google Scholar 

  3. 3.

    Ding, Y., Forestier, A., Duong, T.H.: A Galerkin scheme for the time domain integral equation of acoustic scattering from a hard surface. J. Acoust. Soc. Am. 86(4), 1566–1572 (1989)

    Article  Google Scholar 

  4. 4.

    Faermann, B.: Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods: part I. The two-dimensional case. IMA J. Numer. Anal. 20, 203–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. 5.

    Faermann, B.: Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. Part II. The three-dimensional case. Numer. Math. 92(3), 467–499 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. 6.

    Friedman, M., Shaw, R.: Diffraction of pulses by cylindrical obstacles of arbitrary cross section. J. Appl. Mech. 29, 40–46 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. 7.

    Gläfke, M.: Adaptive methods for time domain boundary integral equations. PhD thesis, Brunel University (2013)

  8. 8.

    Ha-Duong, T.: On retarded potential boundary integral equations and their discretisation. In: Topics in computational wave propagation: direct and inverse problems, vol. 31 of Lect. Notes Comput. Sci. Eng, pp. 301–336. Springer, Berlin (2003)

  9. 9.

    Ha-Duong, T., Ludwig, B., Terrasse, I.: A Galerkin BEM for transient acoustic scattering by an absorbing obstacle. Int. J. Numer. Methods Eng. 57, 1845–1882 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. 10.

    Khoromskij, B., Sauter, S., Veit, A.: Fast quadrature techniques for retarded potentials based on TT/QTT tensor approximation. Comput. Methods Appl. Math. 11(3), 342–362 (2011)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    López-Fernández, M., Sauter, S.A.: Generalized convolution quadrature with variable time stepping. Part II: algorithms and numerical results. Technical Report 09–2012, Institut für Mathematik, Universität Zürich (2012)

  12. 12.

    López-Fernández, M., Sauter, S.: Generalized convolution quadrature with variable time stepping. IMA J. Numer. Anal. 33(4), 1153–1175 (2013)

  13. 13.

    Lubich, C.: Convolution quadrature and discretized operational calculus I. Numerische Mathematik 52, 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    Nédélec, J., Abboud, T., Volakis, J.: Stable solution of the retarded potential equations, Applied Computational Electromagnetics Society (ACES) Symposium Digest. In: 17th Annual Review of Progress, Monterey (2001)

  15. 15.

    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: the art of scientific computing. 2nd edn. Cambridge University Press, New York (1992)

  16. 16.

    Sauter, S., Schwab, C.: Boundary element methods. Springer Series in Computational Mathematics. Springer, Berlin (2010)

  17. 17.

    Sauter, S., Veit, A.: Retarded boundary integral equations on the sphere: exact and numerical solution. IMA J. Numer. Anal. (2013). doi:10.1093/imanum/drs059

  18. 18.

    Sauter, S., Veit, A.: A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions. Numerische Mathematik 123(1), 145–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. 19.

    Schmid, M.: Analysis of tenor gaussian quadrature of functions of class \({C}^\infty \). Master’s thesis, University of Zurich (2013)

  20. 20.

    Trefethen, L.: Is gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. 21.

    Weile, D.S., Pisharody, G., Chen, N.W., Shanker, B., Michielssen, E.: A novel scheme for the solution of the time-domain integral equations of electromagnetics. IEEE Trans. Antennas Propag. 52, 283–295 (2004)

    Article  Google Scholar 

Download references


The second author gratefully acknowledges the support given by the Swiss National Science Foundation (No. P2ZHP2_148705).

Author information



Corresponding author

Correspondence to S. Sauter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sauter, S., Veit, A. Adaptive time discretization for retarded potentials. Numer. Math. 132, 569–595 (2016).

Download citation

Mathematics Subject Classification

  • 35L05
  • 65N38
  • 65R20