Skip to main content
Log in

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider multigrid methods for discontinuous Galerkin \(H({\text {div}},\Omega )\)-conforming discretizations of the Stokes and linear elasticity equations. We analyze variable V-cycle and W-cycle multigrid methods with nonnested bilinear forms. We prove that these algorithms are optimal and robust, i.e., their convergence rates are independent of the mesh size and also of the material parameters such as the Poisson ratio. Numerical experiments are conducted that further confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31(1), 61–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, G., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199(45), 2840–2855 (2010)

    MATH  Google Scholar 

  3. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005)

    Google Scholar 

  4. Ayuso, B., Brezzi, F., Marini, L.D., Xu, J., Zikatanov, L.: A simple preconditioner for a discontinuous Galerkin method for the Stokes problem. arXiv preprint (2012). arXiv:1209.5223

  5. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215–235 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nepomnyaschikh, S.V.: Mesh theorems on traces, normalizations of function traces and their inversion. Soviet J. Numer. Anal. Math. Model. 6(3), 223–242 (1991)

    MATH  MathSciNet  Google Scholar 

  7. Oosterlee, C.W., Lorenz, F.J.: Multigrid methods for the Stokes system. Comput. Sci. Eng. 8(6), 34–43 (2006)

    Article  Google Scholar 

  8. Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65(1), 138–158 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems. Translated from the French by B. Hunt and D. C. Spicer. Studies in Mathematics and its Applications, vol. 15. North-Holland Publishing Co., Amsterdam (1983)

  10. Schöberl, Joachim: Multigrid methods for a parameter dependent problem in primal variables. Numer. Math. 84(1), 97–119 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karer, E., Kraus, J., Zikatanov, L.: A subspace correction method for nearly singular elasticity problems. In: Bank, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol. 91, pp. 165–172. Springer, Berlin Heidelberg (2013)

  12. Lee, Y.J., Wu, J., Xu, L., Zikatanov, J.: Robust subspace correction methods for nearly singular systems. Math. Models Methods Appl. Sci. 17(11), 1937–1963 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85(2), 197–217 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hackbusch, W.: Multigrid Methods and Applications, vol. 4. Springer, Berlin (1985)

    Book  Google Scholar 

  15. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56(193), 1–34 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 87. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  17. Bramble, James H.: A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math. Models Methods Appl. Sci. 13(3), 361–371 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Brenner, S.C., Sung, L.Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–321 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2007)

  21. Langer, U., Queck, W.: On the convergence factor of Uzawa’s algorithm. J. Comput. Appl. Math. 15(2), 191–202 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Brenner, S.C.: Korn’s inequalities for piecewise \({H}^1\) vector fields. Math. Comput. 73, 1067–1088 (2004)

    Article  MATH  Google Scholar 

  23. Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40(6), 2171–2194 (2002)

    Article  MathSciNet  Google Scholar 

  24. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, USA (2003)

    Book  MATH  Google Scholar 

  26. Boffi, D., Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 44. Springer, New York (2013)

    Google Scholar 

  27. Babuška, I., Aziz, A.K.: Lectures on the mathematical foundations of the finite element method. University of Maryland, College Park, Washington DC. Technical Note BN-748 (1972)

  28. Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20:179–192, (1972/73)

  29. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15(3), 573–598 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bergh, J., Löfström, J.: Interpolation Spaces: an Introduction. Springer, Berlin (1976). Grundlehren der Mathematischen Wissenschaften, No. 223

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kraus.

Additional information

The research of Qingguo Hong and Johannes Kraus was supported by the Austrian Science Fund Grant P22989. The research of Jinchao Xu was supported in part by NSF Grant DMS-1217142 and DOE Grant DE-SC0006903. The research of Ludmil Zikatanov was supported in part by NSF DMS-1217142 and NSF DMS-1418843.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Q., Kraus, J., Xu, J. et al. A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations. Numer. Math. 132, 23–49 (2016). https://doi.org/10.1007/s00211-015-0712-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0712-y

Mathematics Subject Classification

Navigation