Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications
- 862 Downloads
- 22 Citations
Abstract
We develop a constructive piecewise polynomial approximation theory in weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The main ingredients to derive optimal error estimates for an averaged Taylor polynomial are a suitable weighted Poincaré inequality, a cancellation property and a simple induction argument. We also construct a quasi-interpolation operator, built on local averages over stars, which is well defined for functions in \(L^1\). We derive optimal error estimates for any polynomial degree on simplicial shape regular meshes. On rectangular meshes, these estimates are valid under the condition that neighboring elements have comparable size, which yields optimal anisotropic error estimates over \(n\)-rectangular domains. The interpolation theory extends to cases when the error and function regularity require different weights. We conclude with three applications: nonuniform elliptic boundary value problems, elliptic problems with singular sources, and fractional powers of elliptic operators.
Mathematics Subject Classification
35J70 35J75 65D05 65N30 65N12Notes
Acknowledgments
We dedicate this paper to R.G. Durán, whose work at the intersection of real and numerical analysis has been inspirational to us.
References
- 1.Acosta, G.: Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math. 135(1), 91–109 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
- 2.Agler, J., McCarthy, J.E.: Pick interpolation and Hilbert function spaces. In: Graduate Studies in Mathematics, vol. 44. American Mathematical Society, Providence (2002)Google Scholar
- 3.Agnelli, J.P., Garau, E.M., Morin, P.: A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: Math. Modell. Numer. Anal. 48(11), 1557–1581 (2014)Google Scholar
- 4.Apel, T.: Interpolation of non-smooth functions on anisotropic finite element meshes. M2AN. Math. Model. Numer. Anal. 33(6), 1149–1185 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
- 5.Araya, R., Behrens, E., Rodríguez, R.: An adaptive stabilized finite element scheme for a water quality model. Comput. Methods Appl. Mech. Eng. 196(29–30), 2800–2812 (2007)zbMATHCrossRefGoogle Scholar
- 6.Arroyo, D., Bespalov, A., Heuer, N.: On the finite element method for elliptic problems with degenerate and singular coefficients. Math. Comp. 76(258), 509–537 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
- 7.Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)Google Scholar
- 8.Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pp. 1–359. Academic Press, New York. With the collaboration of G. Fix and R. B. Kellogg (1972)Google Scholar
- 9.Bartels, S., Nochetto, R.H., Salgado, A.J.: A total variation diminishing interpolation operator and applications. Math. Comput. (2014, accepted)Google Scholar
- 10.Belhachmi, Z., Bernardi, Ch., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105(2), 217–247 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
- 11.Bernardi, Ch., Canuto, C., Maday, Y.: Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
- 12.Besov, O.V., Il’in, V.P., Nikol’skiĭ, S.M.: Integralnye predstavleniya funktsii i teoremy vlozheniya. 2nd ed. Fizmatlit “Nauka”, Moscow (1996)Google Scholar
- 13.Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15. 3rd ed. Springer, New York (2008)Google Scholar
- 14.Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians ii: existence, uniqueness and qualitative properties of solutions. Trans. Amer. Math. Soc. (2014, To appear)Google Scholar
- 15.Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
- 16.Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)zbMATHCrossRefGoogle Scholar
- 17.Casas, E.: \(L^2\) estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47(4), 627–632 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
- 18.Cavalheiro, A.C.: A theorem on global regularity for solutions of degenerate elliptic equations. Commun. Math. Anal. 11(2), 112–123 (2011)zbMATHMathSciNetGoogle Scholar
- 19.Chanillo, S., Wheeden, R.L.: Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions. Am. J. Math. 107(5), 1191–1226 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
- 20.Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: Multilevel methods for nonuniformly elliptic operators. arXiv:1403.4278. (2014)
- 21.Chen, Y.: Regularity of solutions to the Dirichlet problem for degenerate elliptic equation. Chin. Ann. Math. Ser. B 24(4), 529–540 (2003)zbMATHCrossRefGoogle Scholar
- 22.Chua, S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41(4), 1027–1076 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
- 23.Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002)Google Scholar
- 24.Clément, P.: Approximation by finite element functions using local regularization. RAIRO Analyse Numérique 9(R-2), 77–84 (1975)Google Scholar
- 25.D’Angelo, C.: Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 26.Diening, L., Ružička, M.: Interpolation operators in Orlicz–Sobolev spaces. Numer. Math. 107(1), 107–129 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
- 27.Duoandikoetxea, J.: Fourier analysis. In: Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001). Translated and revised from the 1995 Spanish original by David Cruz-UribeGoogle Scholar
- 28.Dupont, T., Scott, L.R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
- 29.Durán, R.G.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20(5), 985–988 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
- 30.Durán, R.G.: Quasi-optimal estimates for finite element approximations using Orlicz norms. Math. Comp. 49(179), 17–23 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
- 31.Durán, R.G., Lombardi, A.L.: Error estimates on anisotropic \(Q_1\) elements for functions in weighted Sobolev spaces. Math. Comput. 74(252), 1679–1706 (2005, electronic)Google Scholar
- 32.Durán, R.G., Lombardi, A.L., Prieto, M.I.: Superconvergence for finite element approximation of a convection–diffusion equation using graded meshes. IMA J. Numer. Anal. 32(2), 511–533 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 33.Durán, R.G., López, F.: García. Solutions of the divergence and Korn inequalities on domains with an external cusp. Ann. Acad. Sci. Fenn. Math. 35(2), 421–438 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 34.Eriksson, K.: Improved accuracy by adapted mesh-refinements in the finite element method. Math. Comput. 44(170), 321–343 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
- 35.Ern, A., Guermond, J.-L.: Theory and practice of finite elements. In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)Google Scholar
- 36.Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
- 37.Figueroa, L.E., Süli, E.: Greedy approximation of high-dimensional Ornstein–Uhlenbeck operators. Found. Comput. Math. 12(5), 573–623 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 38.Franchi, B., Gutiérrez, C.E., Wheeden, R.L.: Two-weight Sobolev–Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5(2), 167–175 (1994)Google Scholar
- 39.French, D.A.: The finite element method for a degenerate elliptic equation. SIAM J. Numer. Anal. 24(4), 788–815 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
- 40.Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 editionGoogle Scholar
- 41.Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361(7), 3829–3850 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
- 42.Gopalakrishnan, J., Pasciak, J.E.: The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations. Math. Comput. 75(256), 1697–1719 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
- 43.Griebel, M., Scherer, K., Schweitzer, A.: Robust norm equivalencies for diffusion problems. Math. Comput. 76(259), 1141–1161 (2007, electronic)Google Scholar
- 44.Grisvard, P.: Elliptic problems in nonsmooth domains. In: Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)Google Scholar
- 45.Gurka, P., Opic, B.: Continuous and compact imbeddings of weighted Sobolev spaces. I. Czechoslovak Math. J. 38(113)(4), 730–744 (1988)Google Scholar
- 46.Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5(4), 403–415 (1996)zbMATHMathSciNetGoogle Scholar
- 47.Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x+101 (2000)Google Scholar
- 48.Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I. Rev. Mat. Complut. 21(1), 135–177 (2008)zbMATHMathSciNetGoogle Scholar
- 49.Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math. 36(1), 111–138 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
- 50.Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1993)Google Scholar
- 51.Kufner, A.: Weighted Sobolev Spaces. A Wiley-Interscience Publication, Wiley, New York (1985)zbMATHGoogle Scholar
- 52.Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25(3), 537–554 (1984)zbMATHMathSciNetGoogle Scholar
- 53.Kufner, A., Sändig, A.-M.: Some applications of weighted Sobolev spaces. In: Teubner Texts in Mathematics, vol. 100. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1987)Google Scholar
- 54.Lai, M.-J., Schumaker, L.L.: Spline functions on triangulations. In: Encyclopedia of Mathematics and its Applications, vol. 110. Cambridge University Press, Cambridge (2007)Google Scholar
- 55.Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York (1972). Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band, 180Google Scholar
- 56.Li, H.: A-priori analysis and the finite element method for a class of degenerate elliptic equations. Math. Comput. 78(266), 713–737 (2009)zbMATHCrossRefGoogle Scholar
- 57.Mamedov, F.I., Amanov, R.A.: On some nonuniform cases of weighted Sobolev and Poincaré inequalities. Algebra i Analiz 20(3), 163–186 (2008). (in Russian)MathSciNetGoogle Scholar
- 58.Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
- 59.Nikol’skiĭ, S.M.: Approximation of functions of several variables and imbedding theorems. Springer, New York (1975)CrossRefGoogle Scholar
- 60.Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 1–59. doi: 10.1007/s10208-014-9208-x (2014)
- 61.Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale. Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)Google Scholar
- 62.Pérez, C.: Two weighted norm inequalities for Riesz potentials and uniform \(L^p\)-weighted Sobolev inequalities. Indiana Univ. Math. J. 39(1), 31–44 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
- 63.Schatz, A.H., Wahlbin, L.B.: Interior maximum norm estimates for finite element methods. Math. Comput. 31(138), 414–442 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
- 64.Scott, L.R.: Finite element convergence for singular data. Numer. Math. 21, 317–327 (1973/74)Google Scholar
- 65.Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
- 66.Seidman, T.I., Gobbert, M.K., Trott, D.W., Kružík, M.: Finite element approximation for time-dependent diffusion with measure-valued source. Numer. Math. 122(4), 709–723 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 67.Sobolev, S.L.: On a theorem of functional analysis. Mat. Sb 4(46), 471–497 (1938)zbMATHGoogle Scholar
- 68.Sobolev, S.L.: Nekotorye primeneniya funkcional’ nogo analiza v matematičeskoĭ fizike. Izdat. Leningrad. Gos. Univ, Leningrad (1950)Google Scholar
- 69.Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 70.Turesson, B.O.: Nonlinear potential theory and weighted Sobolev spaces. In: Lecture Notes in Mathematics, vol. 1736. Springer, Berlin (2000)Google Scholar
- 71.Ziemer, W.P.: Weakly differentiable functions. In: Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)Google Scholar