Skip to main content
Log in

Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

There has been much recent research on preconditioning discretisations of the Helmholtz operator \(\Delta + k^2 \) (subject to suitable boundary conditions) using a discrete version of the so-called “shifted Laplacian” \(\Delta + (k^2+ \mathrm{i}\varepsilon )\) for some \(\varepsilon >0\). This is motivated by the fact that, as \(\varepsilon \) increases, the shifted problem becomes easier to solve iteratively. Despite many numerical investigations, there has been no rigorous analysis of how to chose the shift. In this paper, we focus on the question of how large \(\varepsilon \) can be so that the shifted problem provides a preconditioner that leads to \(k\)-independent convergence of GMRES, and our main result is a sufficient condition on \(\varepsilon \) for this property to hold. This result holds for finite element discretisations of both the interior impedance problem and the sound-soft scattering problem (with the radiation condition in the latter problem imposed as a far-field impedance boundary condition). Note that we do not address the important question of how large \(\varepsilon \) should be so that the preconditioner can easily be inverted by standard iterative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apel, T., Sändig, A.-M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19(1), 63–85 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bayliss, A., Goldstein, C.I., Turkel, E.: An iterative method for the Helmholtz equation. J. Comput. Phys. 49(3), 443–457 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beckermann, B., Goreinov, S.A., Tyrtyshnikov, E.E.: Some remarks on the Elman estimate for GMRES. SIAM J. Matrix Anal. Appl. 27(3), 772–778 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, volume 15 of texts in applied mathematics. Springer (2000)

  5. Cai, X.-C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13(1), 243–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21(1), 89–305 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cocquet, P-H., Gander, M.: Analysis of multigrid performance for finite element discretizations of the shifted Helmholtz equation. Preprint (2014)

  8. Cools, S., Vanroose, W.: Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems. Numer. Linear Algebra Appl. 20, 575–597 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cowen, C.C., Harel, E.: An effective algorithm for computing the numerical range. Unpublished manuscript (1995)

  10. Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16(1), 139 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. pp. 345–357 (1983)

  12. Elman, H.C.: Iterative methods for sparse nonsymmetric systems of linear equations. PhD thesis, Yale University (1982)

  13. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Comm. Pure Appl. Math. 64, 697–735 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Erlangga, Y.A.: Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng. 15(1), 37–66 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Erlangga, Y.A., Oosterlee, C.W., Vuik, C.: A novel multigrid based precconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comp. 27, 1471–1492 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50(3), 409–425 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation. Appl. Numer. Math. 56(5), 648–666 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. In: Graham, I.G., Hou, T.Y., Lakkis, O., Scheichl, R. (eds.) Numerical Analysis of Multiscale Problems, volume 83 of Lecture Notes in Computational Science and Engineering, pp. 325–363. Springer (2012)

  19. Esterhazy, S., Melenk, J.M.: On stability of discretizations of the Helmholtz equation. In: Graham, I.G., Hou, T.Y., Lakkis, O., Scheichl, R. (eds.) Numerical Analysis of Multiscale Problems, volume 83 of Lecture Notes in Computational Science and Engineering, pp. 285–324. Springer (2012)

  20. Graham, I.G., Löhndorf, M., Melenk, J.M., Spence, E.A.: When is the error in the \(h\)-BEM for solving the Helmholtz equation bounded independently of \(k\)? BIT Numer. Math. (to appear) (2014)

  21. Graham, I.G., Spence, E.A., Vainikko, E.: Domain-decomposition preconditioning for high-frequency Helmholtz problems using absorption. in preparation (2015)

  22. Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  23. Ha-Duong, T.: Topics in computational wave propagation, volume 31 of lecture notes in computational science and engineering, chapter on retarded potential boundary integral equations and their discretisation, pp. 301–336. Springer (2003)

  24. Hannukainen, A.: Field of values analysis of Laplace preconditioners for the Helmholtz equation. preprint (2012)

  25. Hannukainen, A.: Field of values analysis of a two-level preconditioner for the Helmholtz equation. SIAM J. Numer. Anal. 51(3), 1567–1584 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hetmaniuk, U.: Stability estimates for a class of Helmholtz problems. Commun. Math. Sci 5(3), 665–678 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hiptmair, R., Moiola, A., Perugia, I.: Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Models Methods Appl. Sci. 21(11), 2263–2287 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ihlenburg, F.: Finite element analysis of acoustic scattering. vol. 132. Springer (1998)

  29. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number Part I: the \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kimn, J-H., Sarkis, M.: Shifted Laplacian RAS solvers for the Helmholtz equation. In: Proceedings of the 20th International Conference on Domain Decomposition Methods in San Diego, California (2011)

  31. Kirby, R.C.: From functional analysis to iterative methods. SIAM Rev. 52(2), 269–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Laird, A., Giles, M.: Preconditioned iterative solution of the 2D Helmholtz equation. Technical Report NA 02–12, Computing Lab, Oxford University (2002)

  33. Löhndorf, M., Melenk, J.M.: Wavenumber-explicit \(hp\)-BEM for high frequency scattering. SIAM J. Numer. Anal. 49(6), 2340–2363 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. McLean, W.C.H.: Strongly elliptic systems and boundary integral equations. Cambridge University Press (2000)

  35. Melenk, J.M.: On generalized finite element methods. PhD thesis, The University of Maryland (1995)

  36. Moiola, A.: Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. PhD thesis, Seminar for applied mathematics, ETH Zürich (2011). Available at http://e-collection.library.ethz.ch/view/eth:4515

  37. Moiola, A., Spence, E.A.: Is the Helmholtz equation really sign-indefinite? SIAM Rev 56(2), 274–312 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  38. Morawetz, C.S.: The decay of solutions of the exterior initial-boundary value problem for the wave equation. Commun. Pure Appl. Math. 14(3), 561–568 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  39. Morawetz, C.S.: Decay for solutions of the exterior problem for the wave equation. Commun. Pure Appl. Math. 28(2), 229–264 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  40. Morawetz, C.S., Ludwig, D.: An inequality for the reduced wave operator and the justification of geometrical optics. Commun. Pure Appl. Math. 21, 187–203 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  41. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson (1967)

  42. Oosterlee, C.W., Vuik, C., Mulder, W.A., Plessix, R.-E.: Shifted-Laplacian preconditioners for heterogeneous Helmholtz problems. In: Koren, B., Vuik, C. (eds.) Advanced Computational Methods in Science and Engineering, volume 71 of Lecture Notes in Computational Science and Engineering, pp. 21–46. Springer (2010)

  43. Rellich, F.: Darstellung der Eigenwerte von \(\Delta u+\lambda u= 0\) durch ein Randintegral. Math. Zeitschrift 46(1), 635–636 (1940)

    Article  MathSciNet  Google Scholar 

  44. Saad, Y.: Iterative methods for sparse linear systems. SIAM, 2nd edn. (2003)

  45. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  46. Sauter, S.A.: A refined finite element convergence theory for highly indefinite helmholtz problems. Computing 78(2), 101–115 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  47. Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp 28(128), 959–962 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  48. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sheikh, A.H., Lahaye, D., Vuik, C.: On the convergence of shifted Laplace preconditioner combined with multilevel deflation. Numer. Linear Algebra Appl. 20, 645–662 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  50. Spence, E.A.: Wavenumber-explicit bounds in time-harmonic acoustic scattering. SIAM J. Math. Anal. 46(4), 2987–3024 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  51. Spence, E.A., Chandler-Wilde, S.N., Graham, I.G., Smyshlyaev, V.P.: A new frequency-uniform coercive boundary integral equation for acoustic scattering. Commun. Pure Appl. Math. 64(10), 1384–1415 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Spence, E.A., Kamotski, I.V., Smyshlyaev, V.P.: Coercivity of combined boundary integral equations in high frequency scattering. Comm. Pure Appl. Math. (to appear) (2015)

  53. Taylor, M.E.: Partial differential equations II: qualitative studies of linear equations. Number 116 in applied mathematical sciences. Springer (1996)

  54. Umetani, N., MacLachlan, S.P., Oosterlee, C.W.: A multigrid-based shifted Laplacian preconditioner for a fourth-order Helmholtz discretization. Numer. Linear Algebra Appl. 16(8), 603–626 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  55. Van Gijzen, M.B., Erlangga, Y.A., Vuik, C.: Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J. Sci. Comput. 29(5), 1942–1958 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version. IMA J. Numer. Anal. 34(3), 1266–1288 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Lehel Banjai (Heriot-Watt), Robert Kirby (Baylor), Markus Melenk (TU Wien), and Valery Smyshlyaev (University College London) for useful discussions. The authors also thank the referees and the editor for their constructive comments. E. A. S was supported by EPSRC Grant EP/1025995/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Spence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gander, M.J., Graham, I.G. & Spence, E.A. Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?. Numer. Math. 131, 567–614 (2015). https://doi.org/10.1007/s00211-015-0700-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0700-2

Mathematics Subject Classification

Navigation