Skip to main content
Log in

Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper introduces a method of constructing nonconforming finite elements which can produce lower bounds for the eigenvalues of elliptic operators. Based on such nonconforming discrete eigenfunctions, we propose a simple method to produce upper bounds of eigenvalues. More precisely, we construct conforming approximations of exact eigenfunctions by a projection average interpolation operator of nonconforming discrete eigenfunctions. After showing the approximation property of the projection average interpolation operator, we prove that the Rayleigh quotients of the aforementioned conforming approximations are convergent to the exact eigenvalues from above. Finally, we combine lower and upper bounds of eigenvalues to obtain high accuracy approximations of eigenvalues. Numerical examples verify our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA 17, 93–101 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland (1991)

  3. Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47, 469–491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63, 97–107 (1999)

    Article  MathSciNet  Google Scholar 

  5. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

  6. Brenner, S.C.: Poincare-Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2004)

    Article  Google Scholar 

  7. Brenner, S.C., Sung, L.Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 23, 83–115 (2005)

    Article  MathSciNet  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Chen, C.M., Huang, Y.Q.: High accuracy theory of finite element methods (in Chinese). Hunan Science and Technology Press, Changsha (1995)

    Google Scholar 

  10. Ciarlet, P.G.: The finite element method for elliptic problems. North—Holland, Amsterdam, New York, Oxford (1978)

  11. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer. 7, 33–76 (1973)

    MathSciNet  Google Scholar 

  12. Fortin, M., Soulie, M.: A non-conforming piecewise quadratic finite element on triangles. Int. J. Numer. Methods Eng. 19, 505–520 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, J., Huang, Y.Q., Lin, Q.: The lower bounds for eigenvalues of elliptic operators-by nonconforming finite element methods. J. Sci. Comput. 61, 196–221 (2014)

  14. Hu, J., Huang, Y.Q., Shen, Q.: A high accuracy post-processing algorithm for the eigenvalues of elliptic operators. J. Sci. Comput. 52, 426–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, J., Shi, Z.C.: The best \(L^2\) norm error estimate of the lower order finite element methods for the fourth order problem. J. Comp. Math. 30, 449–460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, H.J., Sheen, D.W.: Basis for the quadratic nonconforming triangular element of fortin and soulie. Int. J. Numer. Anal. Model. 2, 409–421 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Li, Y.A.: Lower approximation of eigenvalue by the nonconforming finite element method. Math. Numer. Sin. 30, 195–200 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Li, Y.A.: A posterior error analysis of nonconforming methods for the eigenvalue problem. J. Syst. Sci. Complex. 22, 495–502 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Q., Lin, J.: Finite element methods: accuracy and improvements. Science Press, Beijing (2006)

    Google Scholar 

  20. Lin, Q., Tobiska, L., Zhou, A.: On the superconvergence of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Q., Xie, H.H., Luo, F.S., Li, Y., Yang, Y.D.: Stokes eigenvalue approximations from below with nonconforming finite element methods (in Chinese). Math. Pract. Theory 40, 157–168 (2010)

    MathSciNet  Google Scholar 

  22. Lin, Q., Xie, H.H., Xu, J.C.: Lower Bounds of the Discretization error for Piecewise Polynomials. Math. Comput. 83, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H.P., Yan, N.N.: Four finite element solutions and comparison of problem for the Poisson equation eigenvalue (in Chinese). Chin. J. Numer. Meth. Comput. Appl. 2, 81–91 (2005)

    MathSciNet  Google Scholar 

  24. Luo, F.S., Lin, Q., Xie, H.H.: Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Sci. China Math. 55, 1069–1082 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moler, C.B.: Numerical Computing with MATLAB. The chapter “Partial Differential Equations”. SIAM, Philadelphia (2004)

    Book  Google Scholar 

  26. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, Z.C., Wang, M.: The finite element method (in Chinese). Science Press, Beijing (2010)

    Google Scholar 

  29. Strang, G., Fix, G.: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  30. Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Yang, Y.D., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36, 443–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using nonforming finite elements. Sci. China Math. 53, 137–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s elements. Chin. J. Num. Math. Appl. 29, 81–84 (2007)

    MathSciNet  Google Scholar 

  34. Zienkiewicz, O.C., Cheung, Y.K.: The finite element method in structrural and continuum mechanics. McGraw-Hill, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Additional information

The first author was supported by the NSFC Projects 11271035 and 11421101; the second author was supported by the NSFC Key Project 91430213 and International Science and Technology Cooperation Program of China Project 2010DFR00700; the third author was supported by the NSFC Project 11401416.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Huang, Y. & Shen, Q. Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods. Numer. Math. 131, 273–302 (2015). https://doi.org/10.1007/s00211-014-0688-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0688-z

Mathematics Subject Classification

Navigation