Skip to main content
Log in

Convergence to diagonal form of block Jacobi-type methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We provide sufficient conditions for the general sequential block Jacobi-type method to converge to the diagonal form for cyclic pivot strategies which are weakly equivalent to the column-cyclic strategy. Given a block-matrix partition \((A_{ij})\) of a square matrix \(\mathbf {A}\), the paper analyzes the iterative process of the form \(\mathbf {A}^{(k+1)} = [\mathbf {P}^{(k)}]^*\,\mathbf {A}^{(k)}\,\mathbf {Q}^{(k)}\), \(k\ge 0\), \(\mathbf {A}^{(0)}=\mathbf {A}\), where \(\mathbf {P}^{(k)}\) and \(\mathbf {Q}^{(k)}\) are elementary block matrices which differ from the identity matrix in four blocks, two diagonal and the two corresponding off-diagonal blocks. In our analysis of convergence a promising new tool is used, namely, the theory of block Jacobi operators. Typical applications lie in proving the global convergence of block Jacobi-type methods for solving standard and generalized eigenvalue and singular value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bujanović, Z., Drmač, Z.: A contribution to the theory and practise of the block Kogbetliantz method for computing the SVD. BIT Numer. Math. 52(4), 827–849 (2012)

  2. Chandrasekaran, S., Ipsen, I.: On rank-revealing QR factorizations. SIAM J. Matrix Anal. Appl. 15, 592–622 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Charlier, J.P., Vanbegin, M.P., Van Dooren, P.: On efficient implementation of Kogbetliantz’s algorithm for computing the singular value decomposition. Numer. Math. 52, 279–300 (1988)

    Article  MATH  Google Scholar 

  4. Demmel, J.W.: Applied numerical linear algebra. SIAM, Philadelpia (1997)

    Book  MATH  Google Scholar 

  5. Demmel, J.W., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Math. Anal. Appl. 13, 1204–1245 (1992)

    Article  MATH  Google Scholar 

  6. Demmel, W.J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299, 21–80 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Rijk, P.P.M.: A one-sided Jacobi algorithm for computing the singular-value decomposition on a vector computer. SIAM J. Sci. Stat. Comput. 10(2), 359–371 (1989)

    Article  MATH  Google Scholar 

  8. Dopico, F.M., Molera, J.M., Moro, J.: An orthogonal high relative accuracy algorithm for the symmetric eigenproblem. SIAM J. Math. Anal. Appl. 25(2), 301–351 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dopico, F.M., Koev, P., Molera, J.M.: Implicit standard Jacobi gives high relative accuracy. Numer. Math. 113(2), 519–553 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm I. SIAM J. Math. Anal. Appl. 29(4), 1322–1342 (2008)

    Article  MATH  Google Scholar 

  11. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm II. SIAM J. Math. Anal. Appl. 29(4), 1343–1362 (2008)

    Article  MATH  Google Scholar 

  12. Drmač, Z.: A global convergence proof of cyclic Jacobi methods with block rotations. SIAM J. Math. Anal. Appl. 31(3), 1329–1350 (2009)

    Article  Google Scholar 

  13. Eberlein, P.J.: A Jacobi-like method for the automatic computation of eigenvalues and eigenvectors of an arbitrary matrix. J. Soc. Ind. Appl. Math. 10(1), 74–88 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eberlein, P.J., Boothroyd, J.: Solution to the eigenproblem by a norm-reducing Jacobi-type method. Numer. Math. 11, 1–12 (1968)

    Article  MATH  Google Scholar 

  15. Eberlein, P.J., Park, H.: Efficient implementation of Jacobi algorithms and Jacobi sets on distributed memory architectures. Special issue on algorithms for hypercube computers. J. Parallel Distrib. Comput. 8, 358–366 (1990)

    Article  Google Scholar 

  16. Falk, S., Langemeyer, P.: Das Jacobische Rotations-Verfahren für reelsymmetrische Matrizen-Paare I, II. Elektronische Datenverarbeitung 30–43 (1960)

  17. Fernando, K.V.: Linear convergence of the row cyclic Jacobi and Kogbetliantz methods. Numer. Math. 56, 73–94 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Am. Math. Soc. 94, 1–23 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR factorizations. SIAM J. Sci. Comput. 17(4), 848–869 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hansen, E.R.: On Jacobi methods and block Jacobi methods for computing matrix Eigenvalues. Ph.D. thesis, Stanford University (1960)

  21. Hansen, E.R.: On cyclic Jacobi methods. SIAM J. Appl. Math. 11, 449–459 (1963)

    Article  Google Scholar 

  22. Hari, V.: On the global convergence of Eberlein method for real matrices. Numer. Math. 39, 361–369 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hari V.: On cyclic Jacobi methods for the positive definite generalized Eigenvalue problem. Ph.D. thesis, University of Hagen (1984)

  24. Hari, V.: On the convergence of certain cyclic Jacobi-like norm-reducing processes for real matrices. Radovi Matem. 1, 121–147 (1985)

    MATH  MathSciNet  Google Scholar 

  25. Hari, V.: On the convergence of cyclic Jacobi-like processes. Linear Algebra Appl. 81, 105–127 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hari, V., Veselić, K.: On Jacobi methods for singular value decompositions. SIAM J. Sci. Stat. Comput. 8(5), 741–754 (1987)

    Article  MATH  Google Scholar 

  27. Hari, V.: On sharp quadratic convergence bounds for the serial Jacobi methods. Numer. Math. 60, 375–406 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hari, V.: Accelerating the SVD block-Jacobi method. Computing 75, 27–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hari, V.: Convergence of a block-oriented quasi-cyclic Jacobi method. SIAM J. Math. Anal. Appl. 29(2), 349–369 (2007)

    Article  MathSciNet  Google Scholar 

  30. Hari, V., Matejaš, J.: Accuracy of two SVD algorithms for \(2\times 2\) triangular matrices. Appl. Math. Comput. 210(1), 232–257 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hari, V., Zadelj-Martić, V.: Parallelizing the Kogbetliantz method: a first attempt. JNAIAM 2(1–2), 49–66 (2007)

    MATH  Google Scholar 

  32. Hari, V.: On block Jacobi annihilators. Proc. Algoritm. 2009, 1–13 (2009)

    Google Scholar 

  33. Hari, V., Singer, S., Singer, S.: Block-oriented J-Jacobi methods for Hermitian matrices. Linear Algebra Appl. 433(8–10), 1491–1512 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hari, V., Singer, S., Singer, S.: Full block \(J\)-Jacobi method for Hermitian matrices. Linear Algebra Appl. 444, 1–27 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. Henrici, P., Zimmermann, K.: An estimate for the norms of certain cyclic Jacobi operators. Linear Algebra Appl. 1, 289–501 (1968)

    Article  MathSciNet  Google Scholar 

  36. Hestenes, M.R.: Inversion of Matrices by Biorthonalization and Related Results. J. SIAM 6(1), 51–90 (1958)

    MATH  MathSciNet  Google Scholar 

  37. Kogbetliantz, E.: Diagonalization of general complex matrices as a new method for solution of linear equations. Proc. Int. Congr. Math. Amsterdam 2, 356–357 (1954)

    Google Scholar 

  38. Kogbetliantz, E.: Solutions of linear equations by diagonalization of coefficient matrices. Q. Appl. Math. 13, 123–132 (1955)

    MATH  MathSciNet  Google Scholar 

  39. Luk, F., Park, H.: On the equivalence and convergence of parallel Jacobi SVD algorithms. IEEE Trans. Comput. 38(6), 806–811 (1989)

    Article  MathSciNet  Google Scholar 

  40. Luk, F., Park, H.: On parallel Jacobi orderings. SIAM J. Sci. Stat. Comput. 10, 18–26 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mascarenhas, W.F.: On the convergence of the Jacobi method for arbitrary orderings. SIAM J. Matrix Anal. Appl. 16, 1197–1209 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  42. Matejaš, J.: Accuracy of the Jacobi method on scaled diagonally dominant symmetric matrices. SIAM. J. Matrix Anal. Appl. 31, 133–153 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Matejaš, J., Hari, V.: Accuracy of the Kogbetliantz method for scaled diagonally dominant triangular matrices. Appl. Math. Comput. 217, 3726–3746 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mathias, R.: Accurate eigensystem computations by Jacobi methods. SIAM J. Math. Anal. Appl. 16(3), 977–1003 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Nazareth, L.: On the convergence of the cyclic Jacobi method. Linear Algebra Appl. 12(2), 151–164 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  46. Novaković, V., Singer, S.: A GPU-based hyperbolic SVD algorithm. BIT Numer. Math. 51(4), 1009–1030 (2011)

  47. Pupovci, D., Hari, V.: On the convergence of parallelized Eberlein methods. Radovi Matem. 8, 249–267 (1999)

    MathSciNet  Google Scholar 

  48. Rhee, H.N., Hari, V.: On the global and cubic convergence of a quasi-cyclic Jacobi method. Numer. Math. 66, 97–122 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Rutishauser, H.: Une mthode pour le calcul des valeurs propres des matrices non symtriques. Comptes Rendus 259, 2758–2758 (1964)

    MATH  MathSciNet  Google Scholar 

  50. Sameh, A.H.: On Jacobi and Jacobi-like algorithms for parallel computer. Math. Comput. 25, 579–590 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  51. Shroff, G., Schreiber, R.: On the convergence of the cyclic Jacobi method for parallel block orderings. SIAM J. Matrix Anal. Appl. 10, 326–346 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  52. Singer, S., Singer, S., Novaković, V., Davidović, D., Bokulić, K., Ušćumlić, A.: Three-level parallel J-Jacobi algorithms for Hermitian matrices. Appl. Math. Comput. 218(9), 5704–5725 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  53. Singer, S., Singer, S., Novaković, V., Ušćumlić, A., Dunjko, V.: Novel modifications of parallel Jacobi algorithms. Numer. Algorithm 59(1), 1–27 (2012)

    Article  MATH  Google Scholar 

  54. Slapničar, I.: Accurate symmetric Eigenreduction by a Jacobi method. Ph.D. thesis, University of Hagen (1992)

  55. Slapničar, I.: Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD. Linear Algebra Appl. 358, 387–424 (2002)

    Article  Google Scholar 

  56. Slapničar, I., Hari, V.: On the quadratic convergence of the Falk–Langemeyer method for definite matrix pairs. SIAM J. Math. Anal. Appl. 12(1), 84–114 (1991)

    Article  MATH  Google Scholar 

  57. Veselić, K., Hari, V.: A note on a one-sided Jacobi algorithm. Numer. Math. 56, 627–633 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  58. Veselić, K.: A Jacobi Eigenreduction Algorithm for Definite Matrix Pairs. Numer. Math. 64(1), 241–269 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  59. Voevodin, V.V.: Cislennye metody linejnoj algebry. Nauka, Moscow (1966)

    Google Scholar 

  60. Zimmermann, K.: On the convergence of the Jacobi process for ordinary and generalized eigenvalue problems. Ph.D. Thesis, Dissertation No. 4305 ETH, Zürich (1965)

Download references

Acknowledgments

The author is thankful to D. Kressner, S. B. Coban and N. Strabić for reading and improving the paper. He is especially thankful to I. Ipsen and the anonymous referees for really excellent remarks which have made the paper much better and shorter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vjeran Hari.

Additional information

This paper is dedicated to Peter Henrici.

This work was supported by the Croatian Ministry of Science, Education and Sports, grant 037-0372783-3042.

Appendix

Appendix

Figure 2 (Fig. 3) shows behavior of the zero pattern of \(\mathbf {F}^{(k)}\) (\(\mathbf {G}^{(k)}\)) for the first cycle. In the second cycle the roles of \(\mathbf {F}^{(k)}\) and \(\mathbf {G}^{(k)}\) are interchanged since \(\mathbf {F}^{(M)}\) (\(\mathbf {G}^{(M)}\)) is strictly block lower- (upper-) triangular. Hence, these figures give insight into the zero patterns of \(\mathbf {F}^{(k)}\) and \(\mathbf {G}^{(k)}\) for all \(k\ge 0\).

Fig. 2
figure 2

First cycle applied to \(\mathbf {F}^{(0)}\). The blocks colored gray need not be zero. The dark gray are pivot blocks

Fig. 3
figure 3

First cycle applied to \(\mathbf {G}^{(0)}\)

1.1 Proof of Lemma 4.8

As mentioned earlier, we can assume that every second equivalence in the inserted sequence is \(\mathop {\sim }\limits ^{s}\) and the others are \(\sim \). Let \(r+1\) be the length of the chain linking \(\fancyscript{O}=\fancyscript{O}_0\) and \(\fancyscript{O}'= \fancyscript{O}_r\). Then we have two possibilities:

$$\begin{aligned} \fancyscript{O}_0\sim \fancyscript{O}_1\mathop {\sim }\limits ^{s}\fancyscript{O}_2&\sim \ \cdots \ \left\{ \begin{array}{ll} \sim \fancyscript{O}_r,\ \text{ if } \text{ r } \text{= } \text{2d+1 }\\ \mathop {\sim }\limits ^{s}\fancyscript{O}_r,\ \text{ if } \text{ r } \text{= } \text{2d } \end{array} \right. \text{ and } \nonumber \\ \fancyscript{O}_0\mathop {\sim }\limits ^{s}\fancyscript{O}_1\sim \fancyscript{O}_2&\mathop {\sim }\limits ^{s}&\cdots \ \left\{ \begin{array}{l} \sim \fancyscript{O}_r,\ \text{ if } \text{ r } \text{= } \text{2d }\\ \mathop {\sim }\limits ^{s} \fancyscript{O}_r,\ \text{ if } \,r = 2d-1 \end{array} \right. . \end{aligned}$$

(i) The proof uses induction with respect to \(d\). For \(d=0\), we have just one possibility: \(r=1\) and \(\fancyscript{O}=\fancyscript{O}_0\sim \fancyscript{O}_1=\fancyscript{O}'\). The assertion assumes the form \(\Vert { \large J}\!_{{\fancyscript{O}}'}^{\,[1]} { \large J}\!_{{\fancyscript{O}}'}^{\,[2]}\Vert \le c\). Lemma 4.4(i) implies \({ \large J}\!_{{\fancyscript{O}}'}^{\,[1]}={ \large J}\!_{{\fancyscript{O}}}^{\,[1]}\) and \({ \large J}\!_{{\fancyscript{O}}'}^{\,[2]}={ \large J}\!_{{\fancyscript{O}}}^{\,[2]}\), where \({ \large J}\!_{{\fancyscript{O}}}^{\,[1]}\) denotes the Jacobi operator composed by the same Jacobi annihilators as \({ \large J}\!_{{\fancyscript{O}}'}^{\,[1]}\), and similar holds for \({ \large J}\!_{{\fancyscript{O}}}^{\,[2]}\). Hence, the assertion is implied by the assumption \(\Vert { \large J}\!_{{\fancyscript{O}}}{ }\large {J}_{{\fancyscript{O}}}\Vert _2 \le c\).

For \(d=1\), we have four possibilities: \(\fancyscript{O}\mathop {\sim }\limits ^{s}\fancyscript{O}'\), \(\fancyscript{O}\sim \fancyscript{O}_1\mathop {\sim }\limits ^{s}\fancyscript{O}'\), \(\fancyscript{O}\mathop {\sim }\limits ^{s}\fancyscript{O}_1\sim \fancyscript{O}'\) and \(\fancyscript{O}\sim \fancyscript{O}_1\mathop {\sim }\limits ^{s}\fancyscript{O}_2\sim \fancyscript{O}'\). For all these cases, the assertion assumes the form \(\chi \equiv \Vert { \large J}\!_{{\fancyscript{O}}'}^{\,[1]} { \large J}\!_{{\fancyscript{O}}'}^{\,[2]}{ \large J}\!_{{\fancyscript{O}}'}^{\,[3]}\Vert _2 \le c\).

In the first case, \(\fancyscript{O}\mathop {\sim }\limits ^{s} \fancyscript{O}'\), so we can write \( { \large J}\!_{{\fancyscript{O}}'}^{\,[t]}=\varTheta _2^{[t]}\varTheta _1^{[t]},\ { \large J}\!_{{\fancyscript{O}}}^{\,[t]}=\varTheta _1^{[t]}\varTheta _2^{[t]},\ t=1,2,3\) where \(\varTheta _1^{[t]}\) and \(\varTheta _2^{[t]}\) are made of the Jacobi annihilators which build \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\). Using Proposition 4.2, we have \(\chi =\Vert \varTheta _2^{[1]}\varTheta _1^{[1]}\varTheta _2^{[2]}\varTheta _1^{[2]}\varTheta _2^{[3]}\varTheta _1^{[3]}\Vert _2 \le \Vert (\varTheta _1^{[1]}\varTheta _2^{[2]})(\varTheta _1^{[2]}\varTheta _2^{[3]})\Vert _2 \). Because each parenthesis represents one Jacobi operator made of the Jacobi annihilators from \(\Upsilon _{\pi }\) and defined by the ordering \(\fancyscript{O}\), the assumption \(\Vert { \large J}\!_{{\fancyscript{O}}}{ }\large {J}_{{\fancyscript{O}}}\Vert _2 \le c\) implies \(\chi \le c^2<c\).

In the second case, we have \({ \large J}\!_{{\fancyscript{O}}_1}^{\,[t]}={ \large J}\!_{{\fancyscript{O}}}^{\,[t]}\) for \(t=1,2,3\), where \({ \large J}\!_{{\fancyscript{O}}}^{\,[t]}\) denotes the Jacobi operator composed by the same Jacobi annihilators as \({ \large J}\!_{{\fancyscript{O}}_1}^{\,[t]}\). Hence, \(\Vert { \large J}\!_{{\fancyscript{O}}_1}^{\;[t_1]}{ \large J}\!_{{\fancyscript{O}}_1}^{\,[t_2]}\Vert _2 \le c,\ t_1,t_2\in \{1,2,3\}\). The next equivalence relation is \(\mathop {\sim }\limits ^{s}\), so we can write \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}=\varTheta _2^{[t]}\varTheta _1^{[t]}\), \({ \large J}\!_{{\fancyscript{O}}_1}^{\,[t]}=\varTheta _1^{[t]}\varTheta _2^{[t]}\) for \(t=1,2,3\). Here \(\varTheta _1^{[t]}\) and \(\varTheta _2^{[t]}\) are composed of the Jacobi annihilators from \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\) and are not necessarily the same as earlier. The rest of the proof is the same as earlier.

In the third case, we first note that \({ \large J}\!_{{\fancyscript{O}}_1}^{\,[t]}={ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\) for \(t=1,2,3\). For each \(t\), we start from \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\), rearrange the Jacobi annihilators, and obtain \({ \large J}\!_{{\fancyscript{O}}_1}^{\,[t]}\). Then we continue as in the first case. We conclude that \(\chi = \Vert { \large J}\!_{{\fancyscript{O}}_1}^{\,[1]} { \large J}\!_{{\fancyscript{O}}_1}^{\,[2]}{ \large J}\!_{{\fancyscript{O}}_1}^{\,[3]}\Vert _2 \le c\).

Finally, in the fourth case, we start making conclusions as in the third case, and then we complete the analysis as in the second case.

The Induction Hypothesis. We assume that the assertion of the lemma holds provided the chain contains \(d-1\) shift-equivalences, where \(d\ge 1\).

The Induction Step. Let the chain contain \(d\) shift-equivalences. We divide it into two parts: the head and the tail, where the tail is the right-most part of the chain. The head contains the remaining part of the chain. The form of the tail can be either \(\sim \fancyscript{O}_{r-1}\mathop {\sim }\limits ^{s}\fancyscript{O}'\) or \(\mathop {\sim }\limits ^{s}\fancyscript{O}_{r-1}\sim \fancyscript{O}'\).

Let us consider the first case. By the induction hypothesis, the relation

$$\begin{aligned} \Vert { \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[1]} { \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[2]}\cdots { \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[d+1]}\Vert _2 \le c\ \end{aligned}$$
(7.1)

holds if the Jacobi operators \({ \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[t]}\) are made of the Jacobi annihilators from \(\Upsilon _{\pi }\) and are defined by \(\fancyscript{O}_{r-1}\). Let us denote the left-hand side of the inequality (4.13) by \(\chi \). We have to show that \(\chi \le c\).

Since \(\fancyscript{O}_{r-1}\mathop {\sim }\limits ^{s}\fancyscript{O}'\), we have \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}=\varTheta _2^{[t]}\varTheta _1^{[t]}\), \({ \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[t]}=\varTheta _1^{[t]}\varTheta _2^{[t]}\), \(t=1,\ \ldots \ ,d+2\), for some \(\varTheta _1^{[t]}\) and \(\varTheta _2^{[t]}\) which are made of the Jacobi annihilators from \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\). We have

$$\begin{aligned} \chi&= \Vert \varTheta _2^{[1]}\varTheta _1^{[1]}\varTheta _2^{[2]}\varTheta _1^{[2]}\cdots \varTheta _2^{[d+1]}\varTheta _1^{[d+1]} \varTheta _2^{[d+2]}\varTheta _1^{[d+2]}\Vert _2\\&\le \Vert (\varTheta _1^{[1]}\varTheta _2^{[2]})(\varTheta _1^{[2]}\varTheta _2^{[3]})\cdots (\varTheta _1^{[d]}\varTheta _2^{[d+1]})(\varTheta _1^{[d+1]}\varTheta _2^{[d+2]})\Vert _2\ \nonumber \\&= \ \Vert { }\large {J}_{{\fancyscript{O}}_{r-1}}^{\,[1]} { }\large {J}_{{\fancyscript{O}}_{r-1}}^{\,[2]}\cdots { }\large {J}_{{\fancyscript{O}}_{r-1}}^{\,[d+1]}\Vert _2. \end{aligned}$$

Here each   \({ }\large {J}_{{\fancyscript{O}}_{r-1}}^{\,[t]}=\varTheta _1^{[t]}\varTheta _2^{[t+1]}\), \(1\le t\le d+1\) is the Jacobi operator built of the Jacobi annihilators appearing in \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\), \(1\le t\le d+2\) and defined by \(\fancyscript{O}_{r-1}\). Since the Jacobi annihilators are from \(\Upsilon _{\pi }\), we can use the induction hypothesis (7.1) to conclude that \(\chi \le c\).

If the tail has the form \(\mathop {\sim }\limits ^{s}\fancyscript{O}_{r-1}\sim \fancyscript{O}'\), the proof is quite similar. One first notes that \(\chi = \Vert { \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[1]} { \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[2]}\cdots { \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[d+2]}\Vert _2\), where for each \(t\), \({ \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[t]}\) has the Jacobi annihilators from \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\), only rearranged according to \(\fancyscript{O}_{r-1}\). The rest of the proof is as in the first case, but the roles of \({ \large J}\!_{{\fancyscript{O}}'}^{\,[t]}\) and \({ \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[t]}\) are replaced by \({ \large J}\!_{{\fancyscript{O}}_{r-1}}^{\,[t]}\) and \({ \large J}\!_{{\fancyscript{O}}_{r-2}}^{\,[t]}\), respectively.

(ii) The proof is very similar to the proof of the assertion (i).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari, V. Convergence to diagonal form of block Jacobi-type methods. Numer. Math. 129, 449–481 (2015). https://doi.org/10.1007/s00211-014-0647-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0647-8

Mathematics Subject Classification (2000)

Navigation