Skip to main content
Log in

A convergent scheme for Hamilton–Jacobi equations on a junction: application to traffic

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we consider first order Hamilton–Jacobi (HJ) equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. For this continuous HJ problem, we propose a finite difference scheme and prove two main results. As a first result, we show bounds on the discrete gradient and time derivative of the numerical solution. Our second result is the convergence (for a subsequence) of the numerical solution towards a viscosity solution of the continuous HJ problem, as the mesh size goes to zero. When the solution of the continuous HJ problem is unique, we recover the full convergence of the numerical solution. We apply this scheme to compute the densities of cars for a traffic model. We recover the well-known Godunov scheme outside the junction point and we give a numerical illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achdou, Y., Camilli, F., Cutri, A., Tchou, N.: Hamilton–Jacobi equations on networks. In: World Congress, vol. 18, pp. 2577–2582 (2011)

  2. Achdou, Y., Camilli, F., Cutri, A., Tchou, N.: Hamilton–Jacobi equations constrained on networks. NoDEA Nonlinear Differ. 20, 413–445 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201, 27–86 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37, 1973–2004 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications, vol. 17. Springer, Paris (1994)

    Google Scholar 

  6. Bokanowski, O., Cheng, Y., Shu, C.-W.: A discontinuous Galerkin solver for front propagation. SIAM J. Sci. Comput. 33, 923–938 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bokanowski, O., Zidani, H.: Anti-dissipative schemes for advection and application to Hamilton–Jacobi–Bellman equations. J. Sci. Comput. 30, 1–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bressan, A.: Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem. Oxford Lecture Series in Mathematics and its Applications, vol. 20. Oxford University Press, Oxford (2000)

  9. Bretti, G., Natalini, R., Piccoli, B.: Fast algorithms for the approximation of a fluid-dynamic model on networks. Discrete Contin. Dyn. Syst. Ser. B 6, 427–448 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bretti, G., Natalini, R., Piccoli, B.: Numerical algorithms for simulations of a traffic model on road networks. J. Comput. Appl. Math. 210, 71–77 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bretti, G., Natalini, R., Piccoli, B.: A fluid-dynamic traffic model on road networks. Arch. Comput. Methods Eng. 14, 139–172 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Camilli, F., Marchi, C., Schieborn, D.: The vanishing viscosity limit for Hamilton–Jacobi equations on Networks. J. Differ. Equ. 254, 4122–4143 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Camilli, F., Festa, A., Schieborn, D.: An approximation scheme for a Hamilton–Jacobi equation defined on a network. Appl. Numer. Math. 73, 33–47 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Capuzzo Dolcetta, I.: On a discrete approximation of the Hamilton–Jacobi equation of dynamic programming. Appl. Math. Optim. 4, 367–377 (1983)

    Article  MathSciNet  Google Scholar 

  15. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1928)

    Article  MathSciNet  Google Scholar 

  17. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43, 1–19 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)

  19. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, vol. 325. Springer, Berlin (2000)

    Book  Google Scholar 

  20. Falcone, M.: A numerical approach to the infinite horizon problem of deterministic control theory. Appl. Math. Optim. 15, 1–13 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Falcone, M., Ferretti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton–Jacobi–Bellman equations. Numer. Math. 67, 315–344 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Flötteröd, G., Rohde, J.: Operational macroscopic modeling of complex urban intersections. Transp. Res. B 45, 903–922 (2011)

    Article  Google Scholar 

  23. Garavello, M., Natalini, R., Piccoli, B., Terracina, A.: Conservation laws with discontinuous flux. Netw. Heterog. Media 2, 159–179 (2006)

    Article  MathSciNet  Google Scholar 

  24. Garavello, M., Piccoli, B.: Traffic Flow on Networks. AIMS Series on Applied Mathematics, vol. 1. American Institute of Mathematical Sciences (AIMS), Springfield (2006)

  25. Garavello, M., Piccoli, B.: Conservation laws on complex networks. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1925–1951 (2009)

  26. Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Math. Sb. 47, 271–290 (1959)

    MathSciNet  Google Scholar 

  27. Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Mathematics and Applications, vol. 3/4. Ellipses, Paris (1991)

  28. Göttlich, S., Herty, M., Ziegler, U.: Numerical discretization of Hamilton–Jacobi equations on networks. Netw. Heterog. Media 8, 685–705 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 666–690 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Imbert, C., Monneau, R., Zidani, H.: A Hamilton–Jacobi approach to junction problems and application to traffic flows. ESAIM Control Optim. Calc. Var. 19, 129–166 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Khoshyaran, M.M., Lebacque, J.P.: Internal state models for intersections in macroscopic traffic flow models. In: Proceedings of Traffic and Granular Flow 09 (2009, accepted)

  32. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In: CBMS-NSF Regional Conference Series in Applied Mathematics (No. 11) (1987)

  33. Lebacque, J.P.: Les modèles macroscopiques du trafic. Annales des Ponts 67, 28–45 (1993)

    Google Scholar 

  34. Lebacque, J.P.: The Godunov scheme and what it means for first order traffic flow models. In: Lesort, J.B. (ed.) 13th ISTTT Symposium, pp. 647–678. Elsevier, New York (1996)

    Google Scholar 

  35. Lebacque, J.P., Khoshyaran, M.M.: Macroscopic flow models (First order macroscopic traffic flow models for networks in the context of dynamic assignment). In: Patriksson, M., Labbé, M. (eds.) Transportation Planning, the State of the Art, pp. 119–140. Klüwer Academic Press, Dordrecht (2002)

    Google Scholar 

  36. Lebacque, J.P., Koshyaran, M.M.: First-order macroscopic traffic flow models: intersection modeling, network modeling. In: Mahmassani, H.S. (ed.) Proceedings of the 16th International Symposium on the Transportation and Traffic Theory, College Park, Maryland, USA, pp. 365–386. Elsevier, Oxford (2005)

    Google Scholar 

  37. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  38. Lighthill, M.J., Whitham, G.B.: On kinetic waves. II. Theory of traffic flows on long crowded roads. Proc. R. Soc. Lond. Ser. A 229, 317–345 (1955)

  39. Osher, S., Shu, C.-W.: High order essentially non-oscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  40. Perthame, B.: Kinetic Formulation of Conservation Laws. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2002)

    Google Scholar 

  41. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  42. Serre, D.: Systems of Conservation Laws I: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  43. Tampere, C., Corthout, R., Cattrysse, D., Immers, L.: A generic class of first order node models for dynamic macroscopic simulations of traffic flows. Transp. Res. B 45, 289–309 (2011)

    Article  Google Scholar 

  44. Xu, Z., Shu, C.-W.: Anti-diffusive high order WENO schemes for Hamilton–Jacobi equations. Methods Appl. Anal. 12, 169–190 (2005)

    MATH  MathSciNet  Google Scholar 

  45. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Imbert for indications about the literature, M. Hustić for his suggestions to simplify certain parts of the proofs and Ł. Paszkowski for valuable comments on the presentation. The authors also thank the two anonymous referees for their comments and corrections that improved the manuscript. This work was partially supported by the ANR (Agence Nationale de la Recherche) through HJnet project ANR-12-BS01-0008-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Costeseque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costeseque, G., Lebacque, JP. & Monneau, R. A convergent scheme for Hamilton–Jacobi equations on a junction: application to traffic. Numer. Math. 129, 405–447 (2015). https://doi.org/10.1007/s00211-014-0643-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0643-z

Mathematics Subject Classification (2010)

Navigation