Advertisement

Numerische Mathematik

, Volume 129, Issue 1, pp 91–125

# A framework for generalising the Newton method and other iterative methods from Euclidean space to manifolds

Article

## Abstract

The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative method computing a coordinate independent property of a function (such as a zero or a local minimum). All possible Newton methods on manifolds are believed to come under this framework. Changes of coordinates, and not any Riemannian structure, are shown to play a natural role in lifting the Newton method to a manifold. The framework also gives new insight into the design of Newton methods in general.

49M15

## References

1. 1.
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
2. 2.
Absil, P.A., Mahony, R., Sepulchre, R., Van Dooren, P.: A Grassmann-Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. Publ. Soc. Indus Appl. Math. 44(1), 57–73 (2002)
3. 3.
Absil, P.A., Malick, J.: Projection-like retractions on matrix manifolds. Siam J. Optim. 22(1), 135–158 (2012)
4. 4.
Absil, P.A., Sepulchre, R., Van Dooren, P., Mahony, R.: Cubically convergent iterations for invariant subspace computation. SIAM J. Matrix Anal. Appl. 26(1), 70–96 (2004)
5. 5.
Adler, R.L., Dedieu, J.-P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)
6. 6.
Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8(2), 197–226 (2008)
7. 7.
Argyros, I.K.: An improved unifying convergence analysis of Newton’s method in Riemannian manifolds. J. Appl. Math. Comput. 25(1–2), 345–351 (2007)
8. 8.
Deuflhard, P.: Newton methods for nonlinear problems: affine invariance and adaptive algorithms. In: Springer Series in Computational Mathematics. Springer, Berlin (2004)Google Scholar
9. 9.
Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal. Appl. 20(2), 303–353 (1998)
10. 10.
Ferreira, O., Svaiter, B.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18(1), 304–329 (2002)
11. 11.
Gabay, D.: Minimizing a differentiable function over a differentiable manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)
12. 12.
Helmke, U., Moore, J.B.: Optimization and dynamical systems. In: Communications and Control Engineering Series. Springer-Verlag London Ltd., London (1994)Google Scholar
13. 13.
Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974)
14. 14.
Kantorovich, L., Akhilov, G.: Functional Analysis in Normed Spaces. Fizmatgiz, Moscow (1959)
15. 15.
Manton, J.H.: Optimisation algorithms exploiting unitary constraints. IEEE Trans. Signal Process. 50(3), 635–650 (2002)
16. 16.
Manton, J.H.: Optimisation geometry. In: Hüper, K., Trumpf, J. (eds.) Mathematical System Theory-Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pp. 261–274. Create Space (2013)Google Scholar
17. 17.
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
18. 18.
Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, New York (1997)
19. 19.
Shub, M.: Some remarks on dynamical systems and numerical analysis. In: Dynamical Systems and Partial Differential Equations (Caracas, 1984), pp. 69–91. Universidad Simon Bolivar, Caracas (1986)Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2014

## Authors and Affiliations

1. 1.Department of Electrical and Electronic EngineeringThe University of MelbourneVictoriaAustralia

## Personalised recommendations 