Skip to main content
Log in

Simplicial gauge theory on spacetime

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We define a discrete gauge-invariant Yang–Mills–Higgs action on spacetime cylindrical meshes with simplicial spatial base. The formulation is a generalization of classical lattice gauge theory, and we prove consistency of the action in the finite element sense. In addition, we perform numerical tests of convergence towards exact continuum results for several choices of gauge fields in pure gauge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Albeit without a scalar potential.

References

  1. Ardill, R.W.B., Clarke, J.P., Drouffe, J.M., Moriarty, K.J.M.: Quantum chromodynamics on a simplicial lattice. Phys. Lett. B128, 203 (1983)

    Article  Google Scholar 

  2. Bender, C.M., Milton, K.A.: Approximate determination of the mass gap in quantum field theory using the method of finite elements. Phys. Rev. D. 34(10), 3149–3155 (1986)

    Article  Google Scholar 

  3. Bender, C.M., Milton, K.A., Sharp, D.H.: Gauge invariance and the finite-element solution of the Schwinger model. Phys. Rev. D. 31(2), 383–388 (1985)

    Article  MathSciNet  Google Scholar 

  4. Bremaud, P.: Markov chains. Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (1991)

  5. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, Berlin/ Heidelberg (2002)

  6. Cahill, K.E., Reeder, R.: Comparison of the simplicial method with Wilson’s Lattice Gauge Theory for U(1) in three dimensions. Phys. Lett. B168, 381 (1986)

    Article  Google Scholar 

  7. Christiansen, S.H., Halvorsen, T.G.: A gauge invariant discretization on simplicial grids of the Schrödinger eigenvalue problem in an electromagnetic field. E-print, UiO (2009)

    Google Scholar 

  8. Christiansen, S.H., Halvorsen, T.G.: A Simplicial Gauge Theory. ArXiv e-prints, June (2010)

  9. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numerica. 20, 1–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christiansen, S.H., Winther, R.: On constraint preservation in numerical simulations of Yang–Mills equations. SIAM J. Sci. Comput. 28(1), 75–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: The finite element method for elliptic problems. In: Studies in Mathematics and Its Applications, vol. 4. 1st ed. North-Holland Publishing Company, Amsterdam (1978)

  12. Creutz, M: Quarks, Gluons and Lattices. Cambridge University Press, Cambridge (1986)

  13. Drouffe, J.M., Moriarty, K.J.M.: Gauge theories on a simplicial lattice. Nucl. Phys. B220, 253–268 (1983)

    Article  Google Scholar 

  14. Drouffe, J.M., Moriarty, K.J.M.: High-statistics study of the phase transition in U(2) four-dimensional simplicial lattice gauge theory. J. Phys. G: Nuclear Phys. 10(10), L221 (1984)

    Article  Google Scholar 

  15. Drouffe, J.M., Moriarty, K.J.M.: U(2) four-dimensional simplicial lattice gauge theory. Z. Phys. C24, 395 (1984)

    Google Scholar 

  16. Drouffe, J.M., Moriarty, K.J.M., Mouhas, C.N.: Monte Carlo simulation of pure U(N) and SU(N) gauge theories on a simplicial lattice. Comput. Phys. Commun. 30, 249 (1983)

    Article  Google Scholar 

  17. Drouffe, J.M., Moriarty, K.J.M., Mouhas, C.N.: U(1) four-dimensional gauge theory on a simplicial lattice. J. Phys. G10, 115 (1984)

    Article  Google Scholar 

  18. Hall, B.C.: Lie Groups, Lie Algebras, and Representations, An Elementary Introduction. 2nd ed. Springer, New York (2004)

  19. Halvorsen, T.G., Sørensen, T.M.: Simplicial gauge theory and quantum gauge theory simulation. Nucl. Phys. B. 854(1), 166–183 (2012)

    Article  MATH  Google Scholar 

  20. Hiptmair, R: Finite elements in computational electromagnetism. Acta Numerica. 11, 237–339 (2002)

    Google Scholar 

  21. Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability. 2nd ed. Cambridge University Press, Cambridge (2009)

  22. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Science Publications, Oxford (Reprinted edition) (2006)

  23. Munthe-Kaas, H., Owren, B.: Computations in a free Lie algebra. Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 957–981 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weinberg, S: The quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, Cambridge (1995)

  25. Weinberg, S: The quantum theory of fields. Vol. 2: Modern Applications. Cambridge University Press, Cambridge (1996)

  26. Whitney, H.: Geometric integration theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  27. Wilson, K.G.: Confinement of quarks. Phys. Rev. D. 10(8), 2445–2459 (1974)

    Article  Google Scholar 

  28. Yang, C.-N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

T. G. Halvorsen had funding from SPADE-ACE (Project 176891/V30, The Research Council of Norway). We would like to thank S. H. Christiansen for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torquil Macdonald Sørensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halvorsen, T.G., Sørensen, T.M. Simplicial gauge theory on spacetime. Numer. Math. 125, 733–760 (2013). https://doi.org/10.1007/s00211-013-0552-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0552-6

Mathematics Subject Classification (2000)

Navigation