Skip to main content

Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential

Part II: discretization and numerical results

Abstract

Four families of ABCs where built in Antoine et al. (Math Models Methods Appl Sci, 22(10), 2012) for the two-dimensional linear Schrödinger equation with time and space dependent potentials and for general smooth convex fictitious surfaces. The aim of this paper is to propose some suitable discretization schemes of these ABCs and to prove some semi-discrete stability results. Furthermore, the full numerical discretization of the corresponding initial boundary value problems is considered and simulations are provided to compare the accuracy of the different ABCs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Antoine, X.: Fast approximate computation of a time-harmonic scattered field using the On-Surface Radiation Condition method. IMA J. Appl. Math. 66, 83–110 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4(4), 729–796 (2008)

    MathSciNet  Google Scholar 

  3. 3.

    Antoine, X., Besse, C.: Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys. 188(1), 157–175 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential. J. Comput. Phys. 228(2), 312–335 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for Schrödinger equations with general potentials and nonlinearities. SIAM J. Sci. Comput. 33(2), 1008–1033 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Antoine, X., Besse, C., Klein P.: Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part I: construction and a priori estimates. Math Models Methods Appl Sci, 22(10) (2012). doi:10.1142/S0218202512500261

  7. 7.

    Antoine, X., Besse, C., Mouysset, V.: Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comp. 73(248), 1779–1799 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Carles, R.: Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential. Commun. Contemp. Math. 7(4), 483–508 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Cazenave, T.: An introduction to nonlinear Schrödinger equations. Instituto de Matemática-UFRJ, Rio de Janeiro, RJ (1996)

    Google Scholar 

  10. 10.

    Debernardi, P., Fasano, P.: Quantum confined Stark effect in semiconductor quantum wells including valence band mixing and Coulomb effects. IEEE J. Quantum Electr. 29, 2741–2755 (1993)

    Article  Google Scholar 

  11. 11.

    del Campo, A., Garcia-Calderon, G., Muga, J.G.: Quantum transients. Phys. Report Rev. Sect. Phys. Lett. 476(1–3), 1–50 (2009)

    Google Scholar 

  12. 12.

    Carles, R.: Nonlinear Schrödinger equation with time dependent potential. Commun. Math. Sci 9(4), 937–964 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31(139), 629–651 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Doetsch, G.: Anleitung zum praktischen Gebrauch der Laplace-Transformation und der $Z$-Transformation, 3rd edn. R. Oldenburg Verlag, München (1967)

    MATH  Google Scholar 

  15. 15.

    Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32(3), 313–357 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Klein, P.: Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités. Ph.D. Thesis, Université H. Poincaré, Nancy (2010). http://tel.archives-ouvertes.fr/tel-00560706/fr/

  17. 17.

    Levy, M.: Non-local boundary conditions for radiowave propagation. Phys. Rev. E. 62(1), 1382–1389 (2000)

    Article  Google Scholar 

  18. 18.

    Levy, M.: Parabolic equation methods for electromagnetic wave propagation. IEE Electromagnetic Waves Series, Institution of Electrical Engineers (IEE), London (2000)

  19. 19.

    Lorin, E., Bandrauk, A., Chelkowski, S.: Numerical Maxwell-Schrödinger model for laser-molecule interaction and propagation. Comput. Phys. Comm. 177(12), 908–932 (2007)

    Article  MATH  Google Scholar 

  20. 20.

    Lorin, E., Bandrauk, A., Chelkowski, S.: Mathematical modeling of boundary conditions for laser-molecule time dependent Schrödinger equations and some aspects of their numerical computation-One-dimensional case. Numer. Meth. P.D.E. 25, 110–136 (2009)

    Google Scholar 

  21. 21.

    Lindmann, E.: Free-space boundary conditions for the time dependent wave equation. J. Comput. Phys. 18, 16–78 (1985)

    Google Scholar 

  22. 22.

    Milinazzo, F., Zala, C., Brooke, G.: Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101(2), 760–766 (1997)

    Article  Google Scholar 

  23. 23.

    Muga, J.G., Palao, J.P., Navarro, B., Egusquiza, I.L.: Complex absorbing potentials. Phys. Rep. 395(6), 357–426 (2004)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Zheng, C.: An exact absorbing boundary condition for the Schrödinger equation with sinusoidal potentials at infinity. Commun. Comput. Phys. 3(3), 641–658 (2008)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Zheng, C.: Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation. Front. Math. China. 5(3), 589–606 (2010)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors want to thank professor J.-F. Burnol for his valuable help concerning the proof of Lemma 1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christophe Besse.

Additional information

The authors are partially supported by the French ANR fundings under the project MicroWave NT09_460489.

Appendix: \(\mathcal Z \)-transform: technical annex

Appendix: \(\mathcal Z \)-transform: technical annex

For the sake of clarity, we precise some notations and results about the \(\mathcal Z \)-transform of a discrete signal [14].

Definition 2

Let \((f_n)_{n\in \mathbb{N }}\) be a discrete signal. We call \(\mathcal Z \)-transform of \((f_n)\), and we denote by \(\mathcal Z (f_n)\) or \(\hat{f}\), the function of the \(z\) variable defined by

$$\begin{aligned} \hat{f}(z) = \mathcal Z (f_n)(z) = \sum _{n=0}^{+\infty } f_n z^{-n}, \qquad for\,|z| > \hat{R_f}, \end{aligned}$$
(77)

where \(\hat{R_f}\) denotes the convergence radius of the series \(\hat{f}\) which is defined by

$$\begin{aligned} \hat{R_f} = \inf \left\{ R>0 \ ; \ \sum _n f_n R^{-n} < +\infty \right\} . \end{aligned}$$
(78)

Thereby, \(\hat{R_f}\) is the inverse of the convergence radius of the power series \(\sum f_n z^n\).

We denote by \(\star \) the usual convolution product

$$\begin{aligned} {\displaystyle }a_n \star b^n = (a\star b )_n = \sum _{k=0}^n a_k b^{n-k}. \end{aligned}$$

Let us recall some classical properties of the \(\mathcal Z \) transform.

Proposition 3

Let \((f_n)_{n\in \mathbb{N }}\) and \((g_n)_{n\in \mathbb{N }}\) be two discrete signals with convergence radius \(\hat{R}_f\) and \(\hat{R}_g\), respectively. Then, the following results hold

  1. 1.

    \(\mathcal Z (f_{n+1}) = z\hat{f} - zf(0)\),

  2. 2.

    \(\mathcal Z (f_{n+1} \pm f_n) = (z\pm 1)\hat{f}(z) - zf(0)\),

  3. 3.

    \(\mathcal Z (f_n\star g_n) = \hat{f}(z) \hat{g}(z)\),    for \(|z|> \max \, (\hat{R_f}, \hat{R_g})\).

We also have the following lemma used in the stability proofs of the paper.

Lemma 1

Let \((u_p)_{p\in \mathbb{N }}\) and \((h_p)_{p\in \mathbb{N }}\) be two sequences. We define the sequence \((y_p)_{p\in \mathbb{N }}\) by

$$\begin{aligned} y_p=\sum _{k=0}^p h_k u_{p-k}, \end{aligned}$$

and by \(\hat{h}\) the \(\mathcal Z \)-transform of \((h_p)_{p\in \mathbb{N }}\), for which we assume that \(R_{\hat{h}} \ge 1\). Let \(\mathbb{H }(\mathbb{E })\) be the Hardy space on \(\mathbb{E }=\left\{ z\in \mathbb{C }, |z|>1\right\} \)

$$\begin{aligned} \mathbb{H }(\mathbb{E }) = \left\{ \mathcal H \, holomorphic\; on \, \mathbb{E }\, s.t. \, \sup _{r>1}\int _{-\pi }^{\pi } \left| \mathcal H (re^{i\omega })\right| \, d\omega < +\infty \right\} . \end{aligned}$$

If \(\hat{h} \in \mathbb{H }(\mathbb{E })\), then one has

$$\begin{aligned} \sum _{p=0}^n \overline{u_p}y_p=\frac{1}{2\pi } \int _{-\pi }^{\pi } \hat{h}(e^{i\omega }) \left| \sum _{p=0}^n u_p e^{-i\omega p} \right| ^2 \, d\omega . \end{aligned}$$
(79)

Proof

Let us define, for \(\rho \ge 1,\,y_p(\rho )=\sum _{k=0}^p h_k \rho ^{-k}u_{p-k}\). We fix \(n<\infty \) and consider the Laurent polynomials \(\hat{y}_\rho (z):=\sum _{p=0}^n y_p(\rho )z^{-p}\) and \(\hat{u}(z):=\sum _{p=0}^n u_pz^{-p}\). By using the Cauchy product, one has for all \(z\) s.t. \(|z|>\rho \)

$$\begin{aligned} \hat{h}(\rho z) \cdot \hat{u}(z) = \hat{h}_{\rho }(z) + \sum _{p=n+1}^\infty \left( \sum _{k=p-n}^p h_k \rho ^{-k} u_{p-k}\right) z^{-p}. \end{aligned}$$

In particular, this is true for the unit circle. We compute the \(L^2\) scalar product on the unit circle for the measure \(\frac{1}{2\pi } d\omega \). The orthogonality of \(z^p\) implies that

$$\begin{aligned} \left\langle \hat{u}, \hat{h}\cdot \hat{u}\right\rangle = \left\langle \hat{u},\hat{y}_\rho \right\rangle = \sum _{p=0}^n \overline{u_p}y_p(\rho ). \end{aligned}$$

The left hand side of this equality is reduced to

$$\begin{aligned} \frac{1}{2\pi } \int _{-\pi }^\pi \hat{h}(\rho e^{i\omega }) \left| \sum _{p=0}^n u_p e^{-i\omega p}\right| ^2 \, d\omega . \end{aligned}$$

But, \(\hat{h}(\rho e^{i\omega })\) converges to \(\hat{h}(e^{i\omega })\) in \(L^1\) when \(\rho \rightarrow 1^+\). Therefore, since \(\lim _{\rho \rightarrow 1^+}y_p(\rho )=y_p\), this ends the proof of Lemma 1. \(\square \)

This lemma is mainly used in the following result.

Lemma 2

Let \((\alpha _n)_n,\,(\beta _n)_n\) and \((\gamma _n)_n\) be the sequences given by (31), and \((\varphi ^k)_{k\in \mathbb{N }}\) a sequence of complex numbers. We have the following properties:

$$\begin{aligned} Q_{\alpha }&= \sum _{p=0}^n \overline{\varphi ^p} \sum _{k=0}^p \alpha _{p-k} \varphi ^k \quad \in e^{i\pi /4}\mathbb{R }^+ \cup e^{-i\pi /4}\mathbb{R }^+, \end{aligned}$$
(80)
$$\begin{aligned} Q_{\beta }&= \sum _{p=0}^n \overline{\varphi ^p} \sum _{k=0}^p \beta _{p-k} \varphi ^k \quad \in e^{i\pi /4}\mathbb{R }^+ \cup e^{-i\pi /4}\mathbb{R }^+, \end{aligned}$$
(81)
$$\begin{aligned} Q_{\gamma }&= \sum _{p=0}^{n} \overline{\varphi ^{p}} \sum _{k=0}^{p} \gamma _{p-k} \varphi ^k \quad \in \{{}\mathrm{Re}(z)\ge 0\}. \end{aligned}$$
(82)

Proof

The proof of the result for the terms \(Q_{\alpha }\) and \(Q_{\beta }\) mainly relies on Lemma 1 (see Annex 5). Let us consider here \(Q_{\alpha }\) (the proof is similar for \(Q_{\beta }\)). The \(\mathcal Z \)-transform of the sequence \((\alpha _n)_n\) evaluated on the unit circle for \(\omega \in (-\pi ,\pi )\) is given by \( \hat{\alpha }(e^{i\omega })=\sqrt{\frac{e^{i\omega }+1}{e^{i\omega }-1}} \in L^1(-\pi ,\pi )\). It is easy to see that \(\hat{\alpha }\in \mathbb H (\mathbb E )\). Therefore, Lemma 1 holds and we have

$$\begin{aligned} Q_{\alpha } = \frac{1}{2\pi } \int _{-\pi }^{\pi } \sqrt{\frac{e^{i\omega }+1}{e^{i\omega }-1}} \, \left| \sum _{n=0}^P v^{n}e^{-i\omega n}\right| ^2 d\omega . \end{aligned}$$

But for \(\omega \in (-\pi ;\pi )\), one has \(\sqrt{\frac{e^{i\omega }+1}{e^{i\omega }-1}} = \sqrt{i\tan \left( \frac{\omega }{2}\right) }\). Hence, the application \(z\mapsto \sqrt{\frac{z+1}{z-1}}\) maps the unit circle onto \(e^{i\pi /4}\mathbb{R }^+\cup e^{-i\pi /4}\mathbb{R }^+\). This implies that

$$\begin{aligned} Q_{\alpha } \in e^{i\pi /4}\mathbb{R }^+\cup e^{-i\pi /4}\mathbb{R }^+. \end{aligned}$$

This proof cannot be extended to \(Q_{\gamma }\) since the \(\mathcal Z \)-transform of the sequence \((\gamma _n)_n\) evaluated on the unit circle for \(\omega \in (-\pi ,\pi )\) does not belong to \(\mathbb{H }(\mathbb{E })\). We therefore proceed in a different way. The term \(Q_{\gamma }\) can be interpreted as an hermitian form

$$\begin{aligned} Q_{\gamma } = \sum _{p=0}^{n} \overline{\varphi ^{p}} \left( \gamma _p\star \varphi ^p\right) = {}^t\overline{\varvec{\varphi }} A \varvec{\varphi } = \langle \varvec{\varphi }, A \varvec{\varphi } \rangle \end{aligned}$$

where \(\varvec{\varphi }\) is the vector with size \(n+1\) and complex coefficients \( \varvec{\varphi } = \left( \varphi _0, \cdots , \varphi _n\right) ^T \) and \(A\) designates the real coefficients matrix of size \((n+1)\times (n+1)\) defined by

$$\begin{aligned} A = \begin{pmatrix} 1 &{} 0 &{} \dots &{} \dots &{} 0 \\ 2 &{} 1 &{} \ddots &{} &{} \vdots \\ 2 &{} 2 &{} 1 &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} \ddots &{} 0 \\ 2 &{} \dots &{} \dots &{} 2 &{} 1 \end{pmatrix}. \end{aligned}$$

Since \(A\) is positive, for any real valued vector \(\mathbf x \) we have

$$\begin{aligned} \langle \mathbf x , A\mathbf x \rangle \ge 0. \end{aligned}$$

We now decompose the complex valued vector \(\varvec{\varphi }\) as \(\varvec{\varphi }=\mathbf x +i\mathbf y \), with \(\mathbf x \) and \(\mathbf y \) two real valued vectors. We compute the hermitian product

$$\begin{aligned} Q_{\gamma } = \langle \varvec{\varphi },A\varvec{\varphi } \rangle = {}&\langle \mathbf x ,A\mathbf x \rangle + \langle \mathbf y ,A\mathbf y \rangle + i \big [ \langle \mathbf x ,A\mathbf y \rangle - \langle \mathbf y ,A\mathbf x \rangle \big ]. \end{aligned}$$

Then we have

$$\begin{aligned} \text{ Re }(Q_{\gamma }) = \langle \mathbf x ,A\mathbf x \rangle + \langle \mathbf y ,A\mathbf y \rangle \ge 0, \end{aligned}$$

and

$$\begin{aligned} \text{ Im }(Q_{\gamma }) = \langle \mathbf x ,A\mathbf y \rangle - \langle \mathbf y ,A\mathbf x \rangle , \end{aligned}$$

this term being non null if \(\mathbf x \) or \(\mathbf y \) are not equal to zero since \(A\) is not symmetric. Consequently, we have

$$\begin{aligned} Q_{\gamma } \in \{{}\text{ Re }(z)\ge 0\}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Antoine, X., Besse, C. & Klein, P. Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Numer. Math. 125, 191–223 (2013). https://doi.org/10.1007/s00211-013-0542-8

Download citation

Mathematics Subject Classification (2000)

  • 35Q41
  • 47G30
  • 35S15