Advertisement

Numerische Mathematik

, Volume 124, Issue 1, pp 121–149 | Cite as

Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations

  • Francisco- Javier SayasEmail author
Article

Abstract

In this paper we present a battery of results related to how Galerkin semidiscretization in space affects some formulations of wave scattering and propagation problems when retarded boundary integral equations are used.

Mathematics Subject Classification

65M38 65R20 65M60 

Notes

Acknowledgments

The author appreciates the thorough work and helpful suggestions of two anonymous referees and of the editor, Prof. Ralf Hiptmair. Their contribution has notably improved the final version of this article.

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam) second edition. Elsevier/Academic Press, Amsterdam (2003)Google Scholar
  2. 2.
    Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(R^n\). J. Math. Pures Appl. (9) 73(6), 579–606 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bamberger, A., Duong, T.H.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I. Math. Methods Appl. Sci. 8(3), 405–435 (1986)zbMATHGoogle Scholar
  4. 4.
    Bamberger, A., Duong, T.H.: Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Methods Appl. Sci. 8(4), 598–608 (1986)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Banjai, L., Laliena, A.R., Sayas F.J.: A fully discrete Kirchhoff formula with CQ-BEM. (In preparation)Google Scholar
  7. 7.
    Banjai, L., Lubich, C., Melenk, J.M.: Runge-Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119(1), 1–20 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47(1), 227–249 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Stuttgart, (ed.) Boundary elements IX, vol. 1, pp. 411–420. Comput. Mech., Southampton (1987)Google Scholar
  10. 10.
    Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Costabel, M.: Time-dependent problems with the boundary integral equation method. In: Stein, E., De Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics. Chapter 22. John Wiley, New York (2003)Google Scholar
  12. 12.
    Domínguez, V., Sayas, F.J.: Some properties of layer potentials and boundary integral operators for the wave equation. To appear in J. Int. Equations ApplGoogle Scholar
  13. 13.
    Engel, K.J., Nagel, R.: A short course on operator semigroups (Universitext). Springer, New York (2006)Google Scholar
  14. 14.
    Galdi, G.P., Rionero, S.: Weighted energy methods in fluid dynamics and elasticity, volume 1134 of Lecture Notes in Mathematics. Springer, Berlin (1985)Google Scholar
  15. 15.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001 (Reprint of the 1998 edition)Google Scholar
  16. 16.
    Ha-Duong, T.: On retarded potential boundary integral equations and their discretisation. In Topics in computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng., pp. 301–336. Springer, Berlin (2003)Google Scholar
  17. 17.
    Han, H.D.: A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8(3), 223–232 (1990)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hanouzet, B.: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)MathSciNetGoogle Scholar
  19. 19.
    Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Math. Comp. 35(152), 1063–1079 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kesavan, S.: Topics in functional analysis and applications. Wiley, New York (1989)zbMATHGoogle Scholar
  21. 21.
    Laliena, A.R., Sayas, F.J.: A distributional version of Kirchhoff’s formula. J. Math. Anal. Appl. 359(1), 197–208 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Laliena, A.R., Sayas, F.J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112(4), 637–678 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67(3), 365–389 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  25. 25.
    Rynne, B.P.: The well-posedness of the electric field integral equation for transient scattering from a perfectly conducting body. Math. Methods Appl. Sci. 22(7), 619–631 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Sayas, F.J.: The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47(5), 3451–3463 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Schanz, M.: Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach (Lecture Notes in Applied and Computational Mechanics). Springer, Berlin (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations