Abstract
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge–Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimates.
This is a preview of subscription content, access via your institution.


References
Abboud, T., Nédélec, J., Volakis, J.: Stable solution of the retarded potential equations. In: Proceedings of 17th Annual Review Progress in Applied Computer and Electromagnetics, Monterey, CA, March 2001, pp. 146–151 (2001)
Bachelot, A., Bounhoure, L., Pujols, A.: Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène. Numer. Math. 89, 257–306 (2001)
Bamberger, A., Duong, T.H.: Formulation Variationnelle Espace-Temps pur le Calcul par Ptientiel Retardé de la Diffraction d’une Onde Acoustique. Math. Meth. Appl. Sci. 8, 405–435 (1986)
Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: Algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)
Banjai, L., Lubich, C.: An error analysis of Runge-Kutta convolution quadrature. BIT 51(3), 483–496 (2011)
Banjai, L., Lubich, C., Melenk, J.M.: A refined convergence analysis of Runge-Kutta convolution quadrature. Numer. Math. 119(1), 1–20 (2011)
Banjai, L., Sauter, S.: Frequency Explicit Regularity Estimates for the Electric Field Integral Operator. Preprint 05–2012, Universität Zürich (2012)
Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47, 227–249 (2008)
Banjai, L., Schanz, M.: Wave propagation problems treated with convolution quadrature and bem. In: Langer, U., Schanz, M., Steinbach, O., Wendland, W.L. (eds.) Fast Boundary Element Methods in Engineering and Industrial Applications, Lecture Notes in Applied and Computational Mechanics, vol. 63, pp. 145–184. Springer, Berlin (2012)
Bendali, A.: Numerical analysis of the exterior boundary value problem for the time-harmonic maxwell equations by a boundary finite element method part 2: the discrete problem. Math. Comput. 43, 47–68 (1984)
Buffa, A., Ciarlet, P.: On traces for functional spaces related to Maxwell’s equations. part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)
Buffa, A., Ciarlet, P. Jr.: On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31–48 (2001)
Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl,\({\Omega }\)) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)
Chen, Q., Monk, P., Wang, X., Weile, D.: Analysis of convolution quadrature applied to the time-domain electric field integral equation. Commun. Comput. Phys. 11, 383–399 (2012)
Chew, W.C., Jin, J.-M., Michielssen, E., Song, J.M.: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Boston, London (2001)
Christiansen, S.H.: Uniformly stable preconditioned mixed boundary element method for low-frequency electromagnetic scattering. C.R. Math. Acad. Sci. Paris 336(8), 677–680 (2003)
Erma, V.A.: Exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape. II. General case. Phys. Rev. (2) 176, 1544–1553 (1968)
Friedman, M., Shaw, R.: Diffraction of pulses by cylindrical obstacles of arbitrary cross section. J. Appl. Mech. 29, 40–46 (1962)
Ha-Duong, T.: On retarded potential boundary integral equations and their discretisation. In: Topics in Computational Wave Propagation: Direct and Iverse Problems, Lect. Notes Comput. Sci. Eng., vol. 31, pp. 301–336. Springer, Berlin (2003)
Hackbusch, W., Kress, W., Sauter, S.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation by cutoff and panel-clustering. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis, pp. 113–134. Springer, Berlin (2007)
Hackbusch, W., Kress, W., Sauter, S.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA. J. Numer. Anal. 29, 158–179 (2009)
Hiptmair, R., Schwab, C.: Natural Boundary Element Methods for the Electric Field Integral Equation on Polyhedra. SIAM J. Numer. Anal. 40, 66–86 (2002)
Kress, W., Sauter, S.: Numerical treatment of retarded boundary integral equations by sparse panel clustering. IMA J. Numer. Anal. 28(1), 162–185 (2008)
Kriemann, R.: HLIBpro C language interface. Technical Report 10/2008, MPI for Mathematics in the Sciences, Leipzig (2008)
Kriemann, R.: HLIBpro user manual. Technical Report 9/2008, MPI for Mathematics in the Sciences, Leipzig (2008)
Lubich, C.: Convolution quadrature and discretized operational calculus I. Numerische Mathematik 52, 129–145 (1988)
Lubich, C.: Convolution quadrature and discretized operational calculus II. Numerische Mathematik 52, 413–425 (1988)
Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numerische Mathematik 67(3), 365–389 (1994)
Lubich, C.: Convolution quadrature revisited. BIT. Numer. Math. 44, 503–514 (2004)
Lubich, C., Ostermann, A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comp. 60(201), 105–131 (1993)
Nédélec, J.: Acoustic and Electromagnetic Equations. Springer, Berlin (2001)
Pujols, A.: Equations intégrales Espace-Temps pour le système de Maxwell Application au calcul de la Surface Equivalente Radar. PhD thesis, L’Universite Bordeaux I (1991)
Pujols, A.: Time Dependent Integral Method for Maxwell Equations. Rapport CESTA/SI A. P. 6589 (1991)
Rao, S., Wilton, D., Glisson, A.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat. AP 30, 409–418 (1982)
Raviart, P., Thomas, J.: A mixed finite element method for 2-nd order elliptic problems. Math. Aspects Finite Element Methods (Springer Lecture Notes in Mathematics) 606, 292–315 (1977)
Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2010)
Sauter, S., Veit, A.: A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions. Numer. Math. 1–32, (2012). doi:10.1007/s00211-012-0483-7
Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)
Schanz, M.: Wave propagation in viscoelastic and poroelastic continua: a boundary element approach. In: Lecture Notes in Applied and Computational Mechanics, vol. 2. Springer, Berlin (2001)
Terrasse, I.: Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés. PhD thesis, Ecole polytechnique, 1993
Veit, A.: Convolution quadrature for time-dependent Maxwell equations. University of Zurich, Master’s thesis (2009)
Wang, X., Weile, D.: Implicit Runge-Kutta methods for the discretization of time domain integral equations. IEEE Trans. Antennas Propagat. 59(12), 4651–4663 (2011)
Wang, X., Wildman, R., Weile, D., Monk, P.: A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics. IEEE Trans. Antennas Propagat. 56(8), 2442–2452 (2008)
Weile, D., Ergin, A., Shanker, B., Michielssen, E.: An accurate discretization scheme for the numerical solution of time domain integral equations. IEEE Antennas Propagat. Soc. Int. Symp. 2, 741–744 (2000)
Weile, D., Pisharody, G., Chen, N., Shanker, B., Michielssen, E.: A novel scheme for the solution of the time-domain integral equations of electromagnetics. IEEE Trans. Antennas Propagat. 52, 283–295 (2004)
Weile, D., Shanker, B., Michielssen, E.: An accurate scheme for the numerical solution of the time domain electric field integral equation. IEEE Antennas Propagat. Soc. Int. Symp. 4, 516–519 (2001)
Wildman, A., Pisharody, G., Weile, D., Balasubramaniam, S., Michielssen, E.: An accurate scheme for the solution of the time-domain integral equations of electromagnetics using higher order vector bases and bandlimited extrapolation. IEEE Trans. Antennas Propagat. 52, 2973–2984 (2004)
Acknowledgments
The second author gratefully acknowledges the helpful discussions he had with Qiang Chen while visiting University of Delaware. The fourth author gratefully acknowledges the support given by SNF, No. PDFMP2_127437/1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ballani, J., Banjai, L., Sauter, S. et al. Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge–Kutta convolution quadrature. Numer. Math. 123, 643–670 (2013). https://doi.org/10.1007/s00211-012-0503-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-012-0503-7