Advertisement

Numerische Mathematik

, Volume 123, Issue 4, pp 643–670 | Cite as

Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge–Kutta convolution quadrature

  • J. Ballani
  • L. Banjai
  • S. SauterEmail author
  • A. Veit
Article

Abstract

In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge–Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimates.

Mathematics Subject Classification

78A45 65N38 65R20 

Notes

Acknowledgments

The second author gratefully acknowledges the helpful discussions he had with Qiang Chen while visiting University of Delaware. The fourth author gratefully acknowledges the support given by SNF, No. PDFMP2_127437/1.

References

  1. 1.
    Abboud, T., Nédélec, J., Volakis, J.: Stable solution of the retarded potential equations. In: Proceedings of 17th Annual Review Progress in Applied Computer and Electromagnetics, Monterey, CA, March 2001, pp. 146–151 (2001)Google Scholar
  2. 2.
    Bachelot, A., Bounhoure, L., Pujols, A.: Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène. Numer. Math. 89, 257–306 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bamberger, A., Duong, T.H.: Formulation Variationnelle Espace-Temps pur le Calcul par Ptientiel Retardé de la Diffraction d’une Onde Acoustique. Math. Meth. Appl. Sci. 8, 405–435 (1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: Algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Banjai, L., Lubich, C.: An error analysis of Runge-Kutta convolution quadrature. BIT 51(3), 483–496 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Banjai, L., Lubich, C., Melenk, J.M.: A refined convergence analysis of Runge-Kutta convolution quadrature. Numer. Math. 119(1), 1–20 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Banjai, L., Sauter, S.: Frequency Explicit Regularity Estimates for the Electric Field Integral Operator. Preprint 05–2012, Universität Zürich (2012)Google Scholar
  8. 8.
    Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47, 227–249 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Banjai, L., Schanz, M.: Wave propagation problems treated with convolution quadrature and bem. In: Langer, U., Schanz, M., Steinbach, O., Wendland, W.L. (eds.) Fast Boundary Element Methods in Engineering and Industrial Applications, Lecture Notes in Applied and Computational Mechanics, vol. 63, pp. 145–184. Springer, Berlin (2012)Google Scholar
  10. 10.
    Bendali, A.: Numerical analysis of the exterior boundary value problem for the time-harmonic maxwell equations by a boundary finite element method part 2: the discrete problem. Math. Comput. 43, 47–68 (1984)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Buffa, A., Ciarlet, P.: On traces for functional spaces related to Maxwell’s equations. part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Buffa, A., Ciarlet, P. Jr.: On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31–48 (2001)Google Scholar
  13. 13.
    Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl,\({\Omega }\)) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chen, Q., Monk, P., Wang, X., Weile, D.: Analysis of convolution quadrature applied to the time-domain electric field integral equation. Commun. Comput. Phys. 11, 383–399 (2012)Google Scholar
  15. 15.
    Chew, W.C., Jin, J.-M., Michielssen, E., Song, J.M.: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Boston, London (2001)Google Scholar
  16. 16.
    Christiansen, S.H.: Uniformly stable preconditioned mixed boundary element method for low-frequency electromagnetic scattering. C.R. Math. Acad. Sci. Paris 336(8), 677–680 (2003)Google Scholar
  17. 17.
    Erma, V.A.: Exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape. II. General case. Phys. Rev. (2) 176, 1544–1553 (1968)Google Scholar
  18. 18.
    Friedman, M., Shaw, R.: Diffraction of pulses by cylindrical obstacles of arbitrary cross section. J. Appl. Mech. 29, 40–46 (1962)Google Scholar
  19. 19.
    Ha-Duong, T.: On retarded potential boundary integral equations and their discretisation. In: Topics in Computational Wave Propagation: Direct and Iverse Problems, Lect. Notes Comput. Sci. Eng., vol. 31, pp. 301–336. Springer, Berlin (2003)Google Scholar
  20. 20.
    Hackbusch, W., Kress, W., Sauter, S.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation by cutoff and panel-clustering. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis, pp. 113–134. Springer, Berlin (2007)CrossRefGoogle Scholar
  21. 21.
    Hackbusch, W., Kress, W., Sauter, S.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA. J. Numer. Anal. 29, 158–179 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hiptmair, R., Schwab, C.: Natural Boundary Element Methods for the Electric Field Integral Equation on Polyhedra. SIAM J. Numer. Anal. 40, 66–86 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kress, W., Sauter, S.: Numerical treatment of retarded boundary integral equations by sparse panel clustering. IMA J. Numer. Anal. 28(1), 162–185 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kriemann, R.: HLIBpro C language interface. Technical Report 10/2008, MPI for Mathematics in the Sciences, Leipzig (2008)Google Scholar
  25. 25.
    Kriemann, R.: HLIBpro user manual. Technical Report 9/2008, MPI for Mathematics in the Sciences, Leipzig (2008)Google Scholar
  26. 26.
    Lubich, C.: Convolution quadrature and discretized operational calculus I. Numerische Mathematik 52, 129–145 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lubich, C.: Convolution quadrature and discretized operational calculus II. Numerische Mathematik 52, 413–425 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numerische Mathematik 67(3), 365–389 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lubich, C.: Convolution quadrature revisited. BIT. Numer. Math. 44, 503–514 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Lubich, C., Ostermann, A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comp. 60(201), 105–131 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Nédélec, J.: Acoustic and Electromagnetic Equations. Springer, Berlin (2001)zbMATHGoogle Scholar
  32. 32.
    Pujols, A.: Equations intégrales Espace-Temps pour le système de Maxwell Application au calcul de la Surface Equivalente Radar. PhD thesis, L’Universite Bordeaux I (1991)Google Scholar
  33. 33.
    Pujols, A.: Time Dependent Integral Method for Maxwell Equations. Rapport CESTA/SI A. P. 6589 (1991)Google Scholar
  34. 34.
    Rao, S., Wilton, D., Glisson, A.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat. AP 30, 409–418 (1982)CrossRefGoogle Scholar
  35. 35.
    Raviart, P., Thomas, J.: A mixed finite element method for 2-nd order elliptic problems. Math. Aspects Finite Element Methods (Springer Lecture Notes in Mathematics) 606, 292–315 (1977)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2010)Google Scholar
  37. 37.
    Sauter, S., Veit, A.: A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions. Numer. Math. 1–32, (2012). doi: 10.1007/s00211-012-0483-7
  38. 38.
    Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Schanz, M.: Wave propagation in viscoelastic and poroelastic continua: a boundary element approach. In: Lecture Notes in Applied and Computational Mechanics, vol. 2. Springer, Berlin (2001)Google Scholar
  40. 40.
    Terrasse, I.: Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés. PhD thesis, Ecole polytechnique, 1993Google Scholar
  41. 41.
    Veit, A.: Convolution quadrature for time-dependent Maxwell equations. University of Zurich, Master’s thesis (2009)Google Scholar
  42. 42.
    Wang, X., Weile, D.: Implicit Runge-Kutta methods for the discretization of time domain integral equations. IEEE Trans. Antennas Propagat. 59(12), 4651–4663 (2011)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wang, X., Wildman, R., Weile, D., Monk, P.: A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics. IEEE Trans. Antennas Propagat. 56(8), 2442–2452 (2008)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Weile, D., Ergin, A., Shanker, B., Michielssen, E.: An accurate discretization scheme for the numerical solution of time domain integral equations. IEEE Antennas Propagat. Soc. Int. Symp. 2, 741–744 (2000)Google Scholar
  45. 45.
    Weile, D., Pisharody, G., Chen, N., Shanker, B., Michielssen, E.: A novel scheme for the solution of the time-domain integral equations of electromagnetics. IEEE Trans. Antennas Propagat. 52, 283–295 (2004)CrossRefGoogle Scholar
  46. 46.
    Weile, D., Shanker, B., Michielssen, E.: An accurate scheme for the numerical solution of the time domain electric field integral equation. IEEE Antennas Propagat. Soc. Int. Symp. 4, 516–519 (2001)Google Scholar
  47. 47.
    Wildman, A., Pisharody, G., Weile, D., Balasubramaniam, S., Michielssen, E.: An accurate scheme for the solution of the time-domain integral equations of electromagnetics using higher order vector bases and bandlimited extrapolation. IEEE Trans. Antennas Propagat. 52, 2973–2984 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für Mathematik in den Naturwissenschaften LeipzigGermany
  2. 2.Institut für MathematikUniversität Zürich ZürichSwitzerland

Personalised recommendations