Skip to main content
Log in

Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we study the long time behavior of a discrete approximation in time and space of the cubic nonlinear Schrödinger equation on the real line. More precisely, we consider a symplectic time splitting integrator applied to a discrete nonlinear Schrödinger equation with additional Dirichlet boundary conditions on a large interval. We give conditions ensuring the existence of a numerical ground state which is close in energy norm to the continuous ground state. Such result is valid under a CFL condition of the form \(\tau h^{-2}\le C\) where \(\tau \) and \(h\) denote the time and space step size respectively. Furthermore we prove that if the initial datum is symmetric and close to the continuous ground state \(\eta \) then the associated numerical solution remains close to the orbit of \(\eta ,\Gamma =\cup _\alpha \{e^{i\alpha }\eta \}\), for very long times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Recall that here \(\langle \, \cdot \, , \, \cdot \, \rangle \) is a real scalar product.

References

  1. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bambusi, D., Penati, T.: Continuous approximation of breathers in one and two dimensional DNLS lattices. Nonlinearity 23(1), 143–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benettin, G., Giorgilli, A.: On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74, 1117–1143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42, 934–952 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgna, J.P., Rial, D.F.: Orbital stability of numerical periodic nonlinear Schrödinger equation. Commun. Math. Sci. 6, 149–169 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G., Miara, B., Thomas, J.-M.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  7. Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fei, Z., Pérez-García, V.M., Vásquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faou, E.: Geometric numerical integration and Schrödinger equations. In: Zurich Lectures in Advanced Mathematics, vol. 8, p. 138. European Mathematical Society (EMS), Zürich (2012)

  11. Faou, E., Grébert, B.: Hamiltonian interpolation of splitting approximations for nonlinear PDE’s. Found. Comput. Math. 11, 381–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fröhlich, J., Gustafson, S., Jonsson, L., Sigal, I.M.: Solitary wave dynamics in an external potential. Commun. Math. Phys. 250, 613–642 (2004)

    Article  MATH  Google Scholar 

  13. Grillakis, M., Shatah, H., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grillakis, M., Shatah, H., Strauss, W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal 94, 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  16. Reich, S.: Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36, 1549–1570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sanz-Serna, J.M.: Methods for the solution of the nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6, 25–42 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weideman, J.A.C., Herbst, B.M.: Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23, 485–507 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Faou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bambusi, D., Faou, E. & Grébert, B. Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation. Numer. Math. 123, 461–492 (2013). https://doi.org/10.1007/s00211-012-0491-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0491-7

Mathematics Subject Classification (2000)

Navigation