Numerische Mathematik

, Volume 122, Issue 3, pp 527–555 | Cite as

Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix

  • Carla FerreiraEmail author
  • Beresford Parlett
  • Froilán M. Dopico


Several relative eigenvalue condition numbers that exploit tridiagonal form are derived. Some of them use triangular factorizations instead of the matrix entries and so they shed light on when eigenvalues are less sensitive to perturbations of factored forms than to perturbations of the matrix entries. A novel empirical condition number is used to show when perturbations are so large that the eigenvalue response is not linear. Some interesting examples are examined in detail.

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bini D.A., Gemignani L., Tisseur F.: The Ehrlich–Aberth method for the nonsymmetric tridiagonal eigenvalue problem. SIAM J. Matrix Anal. Appl. 27(1), 153–175 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Clement P.A.: A class of triple-diagonal matrices for test purposes. SIAM Rev. 1, 50–52 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ferreira C., Parlett B.: Convergence of LR algorithm for a one-point spectrum tridiagonal matrix. Numer. Math. 113(3), 417–431 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  5. 5.
    Higham N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Higham D.J., Higham N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 493–512 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ipsen, I.C.F.: Relative perturbation results for matrix eigenvalues and singular values. Acta Numer. 151–201 (1998)Google Scholar
  8. 8.
    Karow M., Kressner D., Tisseur F.: Structured eigenvalue condition numbers. SIAM J. Matrix Anal. Appl. 28(4), 1052–1068 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lenferink H.W.J., Spijker M.N: On the use of stability regions in the numerical analysis of initial value problems. Math. Comput. 57(195), 221–237 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Li R.-C.: Relative perturbation theory. III. More bounds on eigenvalue variations. Linear Algebra Appl. 266, 337–345 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Liu, Z.S.: On the extended HR algorithm. Technical Report PAM-564, Center for Pure and Applied Mathematics, University of California, Berkeley (1992)Google Scholar
  12. 12.
    Noschese S., Pasquini L.: Eigenvalue condition numbers: zero-structured versus traditional. J. Comput. Appl. Math. 185, 174–189 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Parlett B.N.: Spectral sensitivity of products of bidiagonals. Linear Algebra Appl. 275(276), 417–431 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Parlett B.N., Reinsch C.: Balancing a matrix for calculation of Eigenvalues and Eigenvectors. Numer. Math. 13, 292–304 (1969)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pasquini L.: Accurate computation of the zeros of the generalized Bessel polynomials. Numer. Math. 86, 507–538 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Rice J.: A theory of condition. SIAM J. Numer. Anal. 3(2), 287–310 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Slemons, J.: Toward the solution of the eigenproblem: nonsymmetric tridiagonal matrices. Ph.D thesis. University of Washington, Seattle (2008)Google Scholar
  18. 18.
    Stewart G.W., Sun J.: Matrix Perturbation Theory. Academic Press INC, Boston (1990)zbMATHGoogle Scholar
  19. 19.
    Wilkinson J.H: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Carla Ferreira
    • 1
    Email author
  • Beresford Parlett
    • 2
  • Froilán M. Dopico
    • 3
  1. 1.Centro de MatemáticaUniversidade do MinhoBragaPortugal
  2. 2.Division of the EECS Department, Department of Mathematics and Computer ScienceUniversity of CaliforniaBerkeleyUSA
  3. 3.Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations