Skip to main content
Log in

Balanced POD for model reduction of linear PDE systems: convergence theory

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider convergence analysis for a model reduction algorithm for a class of linear infinite dimensional systems. The algorithm computes an approximate balanced truncation of the system using solution snapshots of specific linear infinite dimensional differential equations. The algorithm is related to the proper orthogonal decomposition, and it was first proposed for systems of ordinary differential equations by Rowley (Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(3):997–1013, 2005). For the convergence analysis, we consider the algorithm in terms of the Hankel operator of the system, rather than the product of the system Gramians as originally proposed by Rowley. For exponentially stable systems with bounded finite rank input and output operators, we prove that the balanced realization can be expressed in terms of balancing modes, which are related to the Hankel operator. The balancing modes are required to be smooth, and this can cause computational difficulties for PDE systems. We show how this smoothness requirement can be lessened for parabolic systems, and we also propose a variation of the algorithm that avoids the smoothness requirement for general systems. We prove entrywise convergence of the matrices in the approximate reduced order models in both cases, and present numerical results for two example PDE systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Singler J.R., Batten B.A.: A proper orthogonal decomposition approach to approximate balanced truncation of infinite dimensional linear systems. Int. J. Comput. Math. 86(2), 355–371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rowley C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(3), 997–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Moore B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control 26(1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Datta B.N.: Numerical Methods for Linear Control Systems. Elsevier Academic Press, San Diego (2004)

    MATH  Google Scholar 

  5. Zhou K., Doyle J.C., Glover K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  6. Antoulas A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  7. Benner, P., Mehrmann, V., Sorensen, D.C. (eds): Dimension Reduction of Large-Scale Systems. Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

  8. Ilak M., Rowley C.: Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20, 034103 (2008)

    Article  Google Scholar 

  9. Bagheri S., Brandt L., Henningson D.: Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbagallo A., Sipp D., Schmid P.: Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 1–50 (2009)

    Article  MATH  Google Scholar 

  11. Ahuja S., Rowley C.: Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J. Fluid Mech. 645, 447–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Curtain, R.F., Glover, K.: Balanced realisations for infinite-dimensional systems. In: Operator Theory and Systems (Amsterdam, 1985). Birkhäuser, Basel, pp. 87–104 (1986)

  13. Glover K., Curtain R.F., Partington J.R.: Realization and approximation of linear infinite-dimensional systems with error bounds. SIAM J. Control Optim. 26(4), 863–898 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Curtain, R.F.: Model reduction for control design for distributed parameter systems. In: Research Directions in Distributed Parameter Systems. SIAM, Philadelphia, PA, pp. 95–121 (2003)

  15. Weidmann J.: Linear Operators in Hilbert Spaces. Springer-Verlag, New York (1980)

    Book  MATH  Google Scholar 

  16. Curtain R.F., Zwart H.J.: An Introduction to Infinite-Dimensional Linear System Theory. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  17. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  18. Curtain R.F., Sasane A.J.: Compactness and nuclearity of the Hankel operator and internal stability of infinite-dimensional state linear systems. Int. J. Control 74(12), 1260–1270 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miklavčič M.: Applied Functional Analysis and Partial Differential Equations. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  20. Kunisch K., Volkwein S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90(1), 117–148 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kunisch K., Volkwein S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henri, T., Yvon, J.P.: Convergence estimates of POD Galerkin methods for parabolic problems. Institut de Recherche Mathématique de Rennes, Prépublication 02-48 (2002)

  23. Henri, T., Yvon, J.P.: Stability of the POD and convergence of the POD Galerkin method for parabolic problems. Institut de Recherche Mathématique de Rennes, Prépublication 02-40 (2002)

  24. Henri, T., Yvon, J.P.: Convergence estimates of POD-Galerkin methods for parabolic problems. In: System Modeling and Optimization. Kluwer Acad. Publ., Boston, MA, pp. 295–306 (2005)

  25. Singler J.R.: Optimality of balanced proper orthogonal decomposition for data reconstruction. Numer. Funct. Anal. Optim. 31(7), 852–869 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Holmes P., Lumley J.L., Berkooz G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  27. Beattie, C.A., Borggaard, J., Gugercin, S., Iliescu, T.: A domain decomposition approach to POD. In: Proceedings of the 45th IEEE Conference on Decision and Control (2006)

  28. Fahl M.: Computation of POD basis functions for fluid flows with Lanczos methods. Math. Comput. Model. 34(1–2), 91–107 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sirovich L.: Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Hille E., Phillips R.S.: Functional Analysis and Semi-Groups. American Mathematical Society, Providence, R.I. (1957)

    Google Scholar 

  31. Hackbusch W.: Integral Equations, International Series of Numerical Mathematics. Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  32. Singler, J.R.: Convergent snapshot algorithms for infinite dimensional Lyapunov equations. IMA J. Numer. Anal. 31(4), 1468–1496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gohberg I.C., Kreĭn M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. American Mathematical Society, Providence, R.I. (1969)

    MATH  Google Scholar 

  34. Ern A., Guermond J.L.: Theory and Practice of Finite Elements. Springer-Verlag, New York (2004)

    MATH  Google Scholar 

  35. Grossmann C., Roos H.G.: Numerical Treatment of Partial Differential Equations. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  36. Ilak M., Bagheri S., Brandt L., Rowley C.W., Henningson D.S.: Model reduction of the nonlinear complex Ginzburg–Landau equation. SIAM J. Appl. Dyn. Syst. 9, 1284–1302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Singler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singler, J.R. Balanced POD for model reduction of linear PDE systems: convergence theory. Numer. Math. 121, 127–164 (2012). https://doi.org/10.1007/s00211-011-0424-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0424-x

Mathematics Subject Classification (2000)

Navigation