Skip to main content
Log in

Optimally adapted meshes for finite elements of arbitrary order and W 1, p norms

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Given a function f defined on a bounded polygonal domain \({\Omega \subset \mathbb{R}^2}\) and a number N > 0, we study the properties of the triangulation \({\mathcal{T}_N}\) that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the W 1, p semi-norm for 1 ≤ p < ∞, and we consider Lagrange finite elements of arbitrary polynomial order m − 1. We establish sharp asymptotic error estimates as N → +∞ when the optimal anisotropic triangulation is used. A similar problem has been studied in Babenko et al. (East J Approx. 12(1):71–101, 2006), Cao (J Numer Anal. 45(6):2368–2391, 2007), Chen et al. (Math Comput. 76:179–204, 2007), Cohen (Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin, 2009), Mirebeau (Constr Approx. 32(2):339–383, 2010), but with the error measured in the L p norm. The extension of this analysis to the W 1, p norm is required in order to match more closely the needs of numerical PDE analysis, and it is not straightforward. In particular, the meshes which satisfy the optimal error estimate are characterized by a metric describing the local aspect ratio of each triangle and by a geometric constraint on their maximal angle, a second feature that does not appear for the L p error norm. Our analysis also provides with practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta G., Apel T., Durân Ricardo G., Lombardi Ariel L.: Anisotropic error estimates for an interpolant defined via moments. Computing 82, 1–9 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Apel, T., Berzins, M., Jimack, P.K., Kunert, G., Plaks, A., Tsukerman, I., Walkley, M.: Mesh shape and anisotropic elements: theory and practice. In: The mathematics of finite elements and applications X MAFELAP 1999 (Uxbridge), pp. 367–376. Elsevier, Oxford (2000)

  3. D’Azevedo E.F., Simpson R.B.: On optimal regular meshes for minimizing the gradient error. Numer. Math. 59, 321–348 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babenko V., Babenko Y., Ligun A., Shumeiko A.: On asymptotical behavior of the optimal linear spline interpolation error of C 2 functions. East J. Approx. 12(1), 71–101 (2006)

    MathSciNet  Google Scholar 

  5. Babenko, Y., Leskevich, T., Mirebeau, J.-M.: Sharp asymptotics of the L p approximation error for interpolation on block partitions. Numerische Mathematik (2010)

  6. Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976)

  7. Boissonnat, J-D., Wormser, C., Yvinec, M.: Locally uniform anisotropic meshing. In: Proceedings of the twenty-fourth annual symposium on Computational geometry, SOCG (2008)

  8. Cao W.: An interpolation error estimate on anisotropic meshes in \({\mathbb{R}^n}\) and optimal metrics for mesh refinement. SIAM J. Numer. Anal. 45(6), 2368–2391 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cao W.: On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle. SIAM J. Numer. Anal. 43(1), 19–40 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cao W.: Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements. SIAM J. Sci. Comput 29(2), 756–781 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen L., Sun P., Xu J.: Optimal anisotropic meshes for minimizing interpolation error in L p-norm. Math. Comput. 76, 179–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Mirebeau, J.-M.: Adaptive and anisotropic piecewise polynomial approximation, chapter 4. In: Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin (2009)

  13. Formaggia L., Perotto S.: New anisotropic a priori error estimates. Numerische Mathematik 89, 641–667 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Huang W., Sun W.: Variational mesh adaptation II: Error estimates and monitor functions. J. Comput. Phys. 184, 619–648 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jamet, P.: Estimations d’erreur pour des éléments finis droits presque dégénérés, CRM-447, Centre d’Etudes de Limiel

  16. Labelle F., Shewchuk, J.R.: Anisotropic Voronoi Diagrams and Guaranteed-Quality Anisotropic Mesh Generation. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 191–200 (2003)

  17. Loseille A., Alauzet F.: Continuous mesh framework part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49(1), 38–60 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mirebeau J.-M.: Optimal meshes for finite elements of arbitrary order. Constr. Approx. 32(2), 339–383 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mirebeau, J.-M.: The optimal aspect ratio for piecewise quadratic anisotropic finite element approximation. In: Proceedings of the conference SampTA 2011 (submitted)

  20. Mirebeau, J.-M.: Adaptive and anisotropic finite element approximation: theory and algorithms, Ph.D. Thesis, http://tel.archives-ouvertes.fr/tel-00544243/en/

  21. ShewChuk, J.R.: What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality Measures. In: Proceedings of the 11th International Meshing Roundtable (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Mirebeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirebeau, JM. Optimally adapted meshes for finite elements of arbitrary order and W 1, p norms. Numer. Math. 120, 271–305 (2012). https://doi.org/10.1007/s00211-011-0412-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0412-1

Mathematics Subject Classification (2000)

Navigation