Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Numerische Mathematik
  3. Article

Fast evaluation of nonlinear functionals of tensor product wavelet expansions

  • Open access
  • Published: 14 July 2011
  • volume 119, pages 765–786 (2011)
Download PDF

You have full access to this open access article

Numerische Mathematik Aims and scope Submit manuscript
Fast evaluation of nonlinear functionals of tensor product wavelet expansions
Download PDF
  • Christoph Schwab1 &
  • Rob Stevenson2 
  • 399 Accesses

  • 4 Citations

  • Explore all metrics

Cite this article

Abstract

For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree structure. Applications are found in the field of (adaptive) tensor product solution methods for semilinear operator equations by collocation methods, or after transformations between the interpolet and (bi-) orthogonal wavelet bases, by Galerkin methods.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Barinka A., Dahmen W., Schneider R.: Fast computation of adaptive wavelet expansions. Numer. Math. 105(4), 549–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cohen A., Dahmen W., Daubechies I., DeVore R.: Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11(2), 192–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen A., Dahmen W., DeVore R.: Adaptive wavelet methods for elliptic operator equations—Convergence rates. Math. Comput. 70, 27–75 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Cohen A., Dahmen W., DeVore R.: Adaptive wavelet methods II—beyond the elliptic case. Found. Comput. Math. 2(3), 203–245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen A., Dahmen W., DeVore R.: Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal. 41, 1785–1823 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahmen W., Schneider R., Xu Y.: Nonlinear functionals of wavelet expansions—adaptive reconstruction and fast evaluation. Numer. Math. 86(1), 49–101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dauge M., Stevenson R.: Sparse tensor product wavelet approximation of singular functions. SIAM J. Math. Anal. 42(5), 2203–2228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dijkema T., Schwab C., Stevenson R.: An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30(3), 423–455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donovan G., Geronimo J., Hardin D.: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30(5), 1029–1056 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gantumur T., Harbrecht H., Stevenson R.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp. 76, 615–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Griebel, M., Koster, F.: Adaptive wavelet solvers for the unsteady incompressible Navier–Stokes equations. In: Advances in Mathematical Fluid Mechanics (Paseky, 1999), pp. 67–118. Springer, Berlin (2000)

  12. Koster, F.: Multiskalen-basierte finite differenzen verfahren auf adaptiven dünnen gittern. Ph.D. thesis, Institut für Numerische Simulation, Universität Bonn (2002)

  13. Nitsche P.A.: Best N-term approximation spaces for tensor product wavelet bases. Constr. Approx. 24(1), 49–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schwab C., Stevenson R.: Adaptive wavelet algorithms for elliptic PDEs on product domains. Math. Comp. 77, 71–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwab C., Stevenson R.: A space-time adaptive wavelet method for parabolic evolution problems. Math. Comp. 78, 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sickel W., Ullrich T.: Tensor products of Sobolev–Besov spaces and applications to approximation from the hyperbolic cross. J. Approx. Theory 161, 748–786 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Seminar for Applied Mathematics, ETH Zürich, ETHZ HG G57.1, 8092, Zürich, Switzerland

    Christoph Schwab

  2. Korteweg-de Vries (KdV) Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands

    Rob Stevenson

Authors
  1. Christoph Schwab
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rob Stevenson
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rob Stevenson.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Schwab, C., Stevenson, R. Fast evaluation of nonlinear functionals of tensor product wavelet expansions. Numer. Math. 119, 765–786 (2011). https://doi.org/10.1007/s00211-011-0397-9

Download citation

  • Received: 28 December 2009

  • Revised: 22 June 2011

  • Published: 14 July 2011

  • Issue Date: December 2011

  • DOI: https://doi.org/10.1007/s00211-011-0397-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2000)

  • 05C05
  • 15A69
  • 41A05
  • 41A63
  • 42C40
  • 65Y20
  • 68Q25
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature