Skip to main content
Log in

Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a structured perturbation theory for the LDU factorization of (row) diagonally dominant matrices and we use this theory to prove that a recent algorithm of Ye (Math Comp 77(264):2195–2230, 2008) computes the L, D and U factors of these matrices with relative errors less than 14n 3 u, where u is the unit roundoff and n × n is the size of the matrix. The relative errors for D are componentwise and for L and U are normwise with respect the “max norm” \({\|A\|_M = \max_{ij} |a_{ij}|}\). These error bounds guarantee that for any diagonally dominant matrix A we can compute accurately its singular value decomposition and the solution of the linear system Axb for most vectors b, independently of the magnitude of the traditional condition number of A and in O(n 3) flops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate J., Choudhury G.L., Whitt W.: Asymptotics for steady-state tail probabilities in structured Markov queueing models. Comm. Statist. Stochastic Models 10(1), 99–143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlberg J.H., Nilson E.N.: Convergence properties of the spline fit. J. Soc. Indust. Appl. Math. 11, 95–104 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alfa A.S., Xue J., Ye Q.: Accurate computation of the smallest eigenvalue of a diagonally dominant M-matrix. Math. Comp. 71(237), 217–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alfa A.S., Xue J., Ye Q.: Entrywise perturbation theory for diagonally dominant M-matrices with applications. Numer. Math. 90(3), 401–414 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avron H., Chen D., Shklarski G., Toledo S.: Combinatorial preconditioners for scalar elliptic finite-element problems. SIAM J. Matrix Anal. Appl. 31(2), 694–720 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barlow J., Demmel J.: Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Num. Anal. 27(3), 762–791 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994). Revised reprint of the 1979 original

  8. Boman E.G., Hendrickson B., Vavasis S.: Solving elliptic finite element systems in near-linear time with support preconditioners. SIAM J. Numer. Anal. 46(6), 3264–3284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan T.F., Foulser D.E.: Effectively well-conditioned linear systems. SIAM J. Sci. Statist. Comput. 9(6), 963–969 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demmel J.: Accurate singular value decompositions of structured matrices. SIAM J. Matrix Anal. Appl. 21(2), 562–580 (1999)

    Article  MathSciNet  Google Scholar 

  11. Demmel J., Gragg W.: On computing accurate singular values and eigenvalues of acyclic matrices. Linear Algebra Appl. 185, 203–218 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demmel J., Gu M., Eisenstat S., Slapničar I., Veselić K., Drmač Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299(1–3), 21–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demmel J., Kahan W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist. Comput. 11(5), 873–912 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demmel J., Koev P.: Accurate SVDs of weakly diagonally dominant M-matrices. Numer. Math. 98(1), 99–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Demmel J., Koev P.: Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials. Linear Algebra Appl. 417(2–3), 382–396 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demmel J., Veselić K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13(4), 1204–1246 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Demmel J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  18. Dopico F.M., Koev P.: Accurate symmetric rank revealing and eigendecompositions of symmetric structured matrices. SIAM J. Matrix Anal. Appl. 28(4), 1126–1156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dopico F.M., Koev P., Molera J.M.: Implicit standard Jacobi gives high relative accuracy. Numer. Math. 113(2), 519–553 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dopico, F.M., Molera, J.M.: Accurate solution of structured linear systems via rank-revealing decompositions. Submitted. (2010)

  21. Dopico F.M., Molera J.M., Moro J.: An orthogonal high relative accuracy algorithm for the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 25(2), 301–351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Drmač Z.: Accurate computation of the product induced singular value decomposition with applications. SIAM J. Num. Anal. 35(5), 1969–1994 (1998)

    Article  MATH  Google Scholar 

  23. Drmač Z., Veselić K.: New fast and accurate Jacobi SVD algorithm. I. SIAM Journal on Matrix Analysis and Applications 29(4), 1322–1342 (2008)

    Article  MATH  Google Scholar 

  24. Drmač Z., Veselić K.: New fast and accurate Jacobi SVD algorithm. II. SIAM Journal on Matrix Analysis and Applications 29(4), 1343–1362 (2008)

    Article  MATH  Google Scholar 

  25. Eisenstat S., Ipsen I.: Relative perturbation techniques for singular value problems. SIAM J. Numer. Anal. 32(6), 1972–1988 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Falkenberg E.: On the asymptotic behaviour of the stationary distribution of Markov chains of M/G/1-type. Comm. Statist. Stochastic Models 10(1), 75–97 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fernando K., Parlett B.: Accurate singular values and differential qd algorithms. Numer. Math. 67, 191–229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gantmacher F.: The Theory of Matrices. AMS Chelsea, Providence, RI (1998)

    Google Scholar 

  29. Golub G., Van Loan C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  30. Higham N.J.: Accuracy and stability of numerical algorithms, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

    Book  MATH  Google Scholar 

  31. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  32. Horn, R.A., Johnson, C.R.: Topics in matrix analysis. Cambridge University Press, Cambridge (1994). Corrected reprint of the 1991 original

  33. Li R.C.: Relative perturbation theory. II. Eigenspace and singular subspace variations. SIAM J. Matrix Anal. Appl. 20(2), 471–492 (1999)

    Article  MathSciNet  Google Scholar 

  34. The MathWorks, Inc., Natick, MA: MATLAB Reference Guide (1992)

  35. O’Cinneide C.A.: Relative-error bounds for the LU decomposition via the GTH algorithm. Numer. Math. 73(4), 507–519 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peña J.M.: Pivoting strategies leading to diagonal dominance by rows. Numer. Math. 81(2), 293–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peña J.M.: LDU decompositions with L and U well conditioned. Electron. Trans. Numer. Anal. 18, 198–208 (2004) (electronic)

    MathSciNet  MATH  Google Scholar 

  38. Priest, D.: On properties of floating point arithmetics: Numerical stability and the cost of accurate computations. Ph.D. thesis, Mathematics Department, University of California, Berkeley, CA, USA (1992)

  39. Stewart G.W.: Introduction to Matrix Computations. Academic Press, New York (1973)

    MATH  Google Scholar 

  40. Varah J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra and Appl. 11, 3–5 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  41. Varga R.S.: On diagonal dominance arguments for bounding \({\|A^{-1}\|_{\infty}}\). Linear Algebra and Appl. 14(3), 211–217 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ye Q.: Computing singular values of diagonally dominant matrices to high relative accuracy. Math. Comp. 77(264), 2195–2230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ye Q.: Relative perturbation bounds for eigenvalues of symmetric positive definite diagonally dominant matrices. SIAM J. Matrix Anal. Appl. 31(1), 11–17 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Froilán M. Dopico.

Additional information

F. M. Dopico was partially supported by the Ministerio de Ciencia e Innovación of Spain through grant MTM-2009-09281.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dopico, F.M., Koev, P. Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices. Numer. Math. 119, 337–371 (2011). https://doi.org/10.1007/s00211-011-0382-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0382-3

Mathematics Subject Classification (2000)

Navigation