Advertisement

Numerische Mathematik

, 118:663 | Cite as

Inf–sup conditions for twofold saddle point problems

  • Jason S. HowellEmail author
  • Noel J. Walkington
Article

Abstract

Necessary and sufficient conditions for existence and uniqueness of solutions are developed for twofold saddle point problems which arise in mixed formulations of problems in continuum mechanics. This work extends the classical saddle point theory to accommodate nonlinear constitutive relations and the twofold saddle structure. Application to problems in incompressible fluid mechanics employing symmetric tensor finite elements for the stress approximation is presented.

Mathematics Subject Classification (2000)

65N30 

References

  1. 1.
    Arnold D.N., Awanou G., Winther R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77(263), 1229–1251 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold D.N., Brezzi F., Douglas J. Jr: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347–367 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arnold D.N., Douglas J. Jr, Gupta C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arnold, D.N., Falk, R.S., Winther R.: Differential complexes and stability of finite element methods. I. The de Rham complex. In: Compatible Spatial Discretizations. Volume 142 of IMA Vol. Math. Appl., pp 24–46. Springer, New York (2006)Google Scholar
  5. 5.
    Arnold, D.N., Falk, R.S., Winther R.: Differential complexes and stability of finite element methods. II. The elasticity complex. In: Compatible Spatial Discretizations. Volume 142 of IMA Vol. Math. Appl., pp 47–67. Springer, New York (2006)Google Scholar
  6. 6.
    Arnold D.N., Falk R.S., Winther R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arnold D.N., Winther R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Babuška I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)CrossRefzbMATHGoogle Scholar
  9. 9.
    Baranger J., Najib K., Sandri D.: Numerical analysis of a three-fields model for a quasi-Newtonian flow. Comput. Methods Appl. Mech. Eng. 109(3–4), 281–292 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barrett J.W., Liu W.B.: Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law. Numer. Math. 64(4), 433–453 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barrett J.W., Liu W.B.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68(4), 437–456 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 2nd edn. Springer-Verlag, New York (2002)Google Scholar
  13. 13.
    Brezzi F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-2), 129–151 (1974)MathSciNetGoogle Scholar
  14. 14.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)Google Scholar
  15. 15.
    Bustinza R., Gatica G.N., González M., Meddahi S., Stephan E.P.: Enriched finite element subspaces for dual-dual mixed formulations in fluid mechanics and elasticity. Comput. Methods Appl. Mech. Eng. 194(2–5), 427–439 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen Z.: Analysis of expanded mixed methods for fourth-order elliptic problems. Numer. Methods Partial Differ. Equ. 13(5), 483–503 (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chen Z.: Expanded mixed finite element methods for linear second-order elliptic problems. I. RAIRO Modél. Math. Anal. Numér. 32(4), 479–499 (1998)zbMATHGoogle Scholar
  18. 18.
    Cockburn B., Gopalakrishnan J.: Error analysis of variable degree mixed methods for elliptic problems via hybridization. Math. Comput. 74(252), 1653–1677 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ervin V.J., Howell J.S., Stanculescu I.: A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 197(33–40), 2886–2900 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ervin V.J., Jenkins E.W., Sun S.: Coupled generalized non-linear Stokes flow with flow through a porous media. SIAM J. Numer. Anal. 47(2), 929–952 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Farhloul M., Fortin M.: A new mixed finite element for the Stokes and elasticity problems. SIAM J. Numer. Anal. 30(4), 971–990 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Farhloul M., Fortin M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76(4), 419–440 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Farhloul M., Zine A.M.: A posteriori error estimation for a dual mixed finite element approximation of non-Newtonian fluid flow problems. Int. J. Numer. Anal. Model. 5(2), 320–330 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gatica G.N.: Solvability and Galerkin approximations of a class of nonlinear operator equations. Z. Anal. Anwendungen 21(3), 761–781 (2002)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gatica G.N., Gatica L.F.: On the a priori and a posteriori error analysis of a two-fold saddle-point approach for nonlinear incompressible elasticity. Int. J. Numer. Methods Eng. 68(8), 861–892 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gatica G.N., Gatica L.F., Stephan E.P.: A dual-mixed finite element method for nonlinear incompressible elasticity with mixed boundary conditions. Comput. Methods Appl. Mech. Eng. 196(35–36), 3348–3369 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gatica G.N., González M., Meddahi S.: A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. I. A priori error analysis. Comput. Methods Appl. Mech. Eng. 193(9–11), 881–892 (2004)CrossRefzbMATHGoogle Scholar
  28. 28.
    Gatica G.N., Márquez A., Meddahi S.: A new dual-mixed finite element method for the plane linear elasticity problem with pure traction boundary conditions. Comput. Methods Appl. Mech. Eng. 197(9–12), 1115–1130 (2008)CrossRefzbMATHGoogle Scholar
  29. 29.
    Gatica G.N., Meddahi S.: A fully discrete Galerkin scheme for a two-fold saddle point formulation of an exterior nonlinear problem. Numer. Funct. Anal. Optim. 22(7–8), 885–912 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gatica G.N., Sayas F.J.: Characterizing the inf-sup condition on product spaces. Numer. Math. 109(2), 209–231 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gatica G.N., Stephan E.P.: A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Methods Partial Differ. Equ. 18(1), 105–128 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. In: Springer Series in Computational Mathematics. Theory and Algorithms, vol. 5. Springer-Verlag, Berlin (1986)Google Scholar
  33. 33.
    Glowinski, R., Marroco, A.: Sur l’approximation par éléments finis d’order un et la résolution par pénalisation dualité d’une classe de problèmes de Dirichlet non linéaires. RAIRO 9ème année, pp. 41–76 (1975)Google Scholar
  34. 34.
    Johnson C.: A mixed finite element method for the Navier-Stokes equations. RAIRO Anal. Numér. 12(4), 335–348 (1978)zbMATHGoogle Scholar
  35. 35.
    Manouzi H., Farhloul M.: Mixed finite element analysis of a non-linear three-fields Stokes model. IMA J. Numer. Anal. 21(1), 143–164 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)zbMATHGoogle Scholar
  37. 37.
    Ming P., Shi Z.: Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem. ESAIM-M2AN 34(5), 1051–1067 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, vol. II. Handb. Numer. Anal., II, pp. 523–639. North-Holland, Amsterdam (1991)Google Scholar
  39. 39.
    Scheurer B.: Existence et approximation de points selles pour certains problèmes non linéaires. RAIRO Anal. Numér. 11(4), 369–400 (1977)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Stenberg R.: Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math. Comput. 42(165), 9–23 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsClarkson UniversityPotsdamUSA
  2. 2.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations