Advertisement

Numerische Mathematik

, Volume 118, Issue 4, pp 765–788 | Cite as

Residual error estimate for BEM-based FEM on polygonal meshes

  • Steffen WeißerEmail author
Article

Abstract

A conforming finite element method on polygonal meshes is reviewed which handles hanging nodes naturally. Trial functions are defined to fulfil the homogeneous PDE locally and they are treated by means of local boundary integral equations. Using a quasi-interpolation operator of Clément type a residual-based error estimate is obtained. This a posteriori estimator can be used to rate the accuracy of the approximation over polygonal elements or it can be applied to an adaptive BEM-based FEM. The numerical experiments confirm our results and show optimal convergence for the adaptive strategy on general meshes.

Mathematics Subject Classification (2000)

65N15 65N30 65N38 65N50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Becker R., Hansbo P., Larson M.: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng 192(5–6), 723–733 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brezzi F., Lipnikov K., Shashkov M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal 43(5), 1872–1896 (2005). doi: 10.1137/040613950 (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  5. 5.
    Clément P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique 9(R-2), 77–84 (1975)Google Scholar
  6. 6.
    Copeland D.: Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes. Int. J. Appl. Math. Comput. Sci 5(1), 60–73 (2009)MathSciNetGoogle Scholar
  7. 7.
    Copeland, D., Langer, U., Pusch, D. From the boundary element domain decomposition methods to local Trefftz finite element methods on polyhedral meshes. Domain Decomposition Methods in Science and Engineering XVIII, pp. 315–322 (2009)Google Scholar
  8. 8.
    Dolejší V., Feistauer M., Sobotíková V.: Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 194(25–26), 2709–2733 (2005). doi: 10.1016/j.cma.2004.07.017 zbMATHCrossRefGoogle Scholar
  9. 9.
    Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996). doi: 10.1137/0733054 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hofreither C., Langer U., Pechstein C.: Analysis of a non-standard finite element method based on boundary integral operators. Electron. Trans. Numer. Anal. (ETNA) 37, 413–436 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    McLean W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  12. 12.
    Morin P., Nochetto R., Siebert K.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Payne L.E., Weinberger H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal 5, 286–292 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Rjasanow S., Steinbach O.: The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, Berlin (2007)Google Scholar
  15. 15.
    Steinbach O.: Numerical approximation methods for elliptic boundary value problems: finite and boundary elements. Springer, Berlin (2007)Google Scholar
  16. 16.
    Veeser, A., Verfürth, R.: Poincaré constants of finite element stars. IMA J. Numer. Anal., IMAJNA-ES-2010-0871.R1 (accepted)Google Scholar
  17. 17.
    Beirao da Veiga L.: A residual based error estimator for the mimetic finite difference method. Numerische Mathematik 108(3), 387–406 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Verfürth R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, London (1996)zbMATHGoogle Scholar
  19. 19.
    Wienholtz E., Kalf H., Kriecherbauer T.: Elliptische Differentialgleichungen zweiter Ordnung. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsSaarland UniversitySaarbrückenGermany

Personalised recommendations