Abstract
Domain decomposition methods for solving the coupled Stokes–Darcy system with the Beavers–Joseph interface condition are proposed and analyzed. Robin boundary conditions are used to decouple the Stokes and Darcy parts of the system. Then, parallel and serial domain decomposition methods are constructed based on the two decoupled sub-problems. Convergence of the two methods is demonstrated and the results of computational experiments are presented to illustrate the convergence.
This is a preview of subscription content, access via your institution.
References
Agoshkov, V.I.: Poincaré-Steklov operators and domain decomposition methods in finite dimensional spaces. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), pp. 73–112. SIAM, Philadelphia (1988)
Agoshkov V.I., Lebedev V.I.: Poincaré-Steklov operators and methods of partition of the domain in variational problems. Computat. Process. syst. 2, 173–227 (1985) (in Russian)
Amara M., Capatina D., Lizaik L.: Coupling of Darcy-Forchheimer and compressible Navier-Stokes equations with heat transfer. SIAM J. Sci. Comput. 31(2), 1470–1499 (2008)
Arbogast T., Brunson D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)
Arbogast T., Gomez M.: A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13(3), 331–348 (2009)
Babuška I., Gatica G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)
Badea L., Discacciati M., Quarteroni A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)
Badia S., Codina R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal 47(3), 1971–2000 (2009)
Beavers G., Joseph D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)
Bernardi C., Hecht F., Nouri F.Z.: A new finite-element discretization of the Stokes problem coupled with the Darcy equations. IMA J. Numer. Anal. 30(1), 61–93 (2010)
Bernardi C., Hecht F., Pironneau O.: Coupling Darcy and Stokes equations for porous media with cracks. Math. Model. Numer. Anal. 39(1), 7–35 (2005)
Bernardi C., Rebollo T.C., Hecht F., Mghazli Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42(3), 375–410 (2008)
Boubendir Y., Tlupova S.: Stokes–Darcy boundary integral solutions using preconditioners. J. Comput. Phys. 228(23), 8627–8641 (2009)
Bramble J.H., Pasciak J.E., Schatz A.H.: The construction of preconditioners for elliptic problems by substructuring I. Math. Comput. 47(175), 103–134 (1986)
Burman E., Hansbo P.: Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Methods Partial Differ. Equ. 21(5), 986–997 (2005)
Burman E., Hansbo P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198(1), 35–51 (2007)
Cai M., Mu M., Xu J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)
Cai M., Mu M., Xu J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233(2), 346–355 (2009)
Cao Y., Gunzburger M., Hu X., Hua F., Wang X., Zhao W.: Finite element approximation for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM. J. Numer. Anal. 47(6), 4239–4256 (2010)
Cao Y., Gunzburger M., Hua F., Wang X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Comm. Math. Sci. 8(1), 1–25 (2010)
Çeşmelioğlu A., Rivière B.: Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16(4), 249–280 (2008)
Çeşmelioğlu A., Rivière B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40(1–3), 115–140 (2009)
Chen N., Gunzburger M., Wang X.: Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes-Brinkman system. J. Math. Anal. Appl. 368(2), 658–676 (2010)
Chen W., Chen P., Gunzburger M., Yan N.: Superconvergence analysis of FEMs for the Stokes–Darcy system. Math. Methods Appl. Sci. 33(13), 1605–1617 (2010)
Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM. J. Numer. Anal. (to appear)
Chidyagwai P., Rivière R.B.: On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)
Dawson C.: Analysis of discontinuous finite element methods for ground water/surface water coupling. SIAM J. Numer. Anal. 44(4), 1375–1404 (2006)
Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Swizerland (2004)
Discacciati, M.: Iterative methods for Stokes/Darcy coupling. In: Domain Decomposition Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 40, pp. 563–570. Springer, Berlin (2005)
Discacciati M., Miglio E., Quarteroni A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)
Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Numerical Mathematics and Advanced Applications, pp. 3–20. Springer Italia, Milan (2003)
Discacciati M., Quarteroni A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6(2–3), 93–103 (2004)
Discacciati M., Quarteroni A., Valli A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)
Ervin V.J., Jenkins E.W., Sun S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009)
Feng M., Qi R., Zhu R., Ju B.: Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem. Appl. Math. Mech. 31(3), 393–404 (2010) (English Ed.)
Galvis, J., Sarkis, M.: Balancing domain decomposition methods for mortar coupling Stokes–Darcy systems. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 373–380. Springer, Berlin (2007)
Galvis J., Sarkis M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)
Galvis J., Sarkis M.: FETI and BDD preconditioners for Stokes-Mortar-Darcy systems. Commun. Appl. Math. Comput. Sci. 5, 1–30 (2010)
Gander M.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
Gatica G.N., Meddahi S., Oyarzúa R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)
Girault V., Rivière B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal 47(3), 2052–2089 (2009)
Guest J.K., Prévost J.H.: Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int. J. Numer. Methods Eng. 66(3), 461–484 (2006)
Hoppe R., Porta P., Vassilevski Y.: Computational issues related to iterative coupling of subsurface and channel flows. CALCOLO 44(1), 1–20 (2007)
Hua, F.: Modeling, analysis and simulation of Stokes–Darcy system with Beavers–Joseph interface condition. Ph.D. dissertation, The Florida State University (2009)
Jäger W., Mikeliä A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)
Jiang B.: A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Methods Appl. Mech. Eng. 198(9–12), 947–957 (2009)
Jones I.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231–238 (1973)
Kanschat G., Riviére B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)
Karper T., Mardal K.A., Winther R.: Unified finite element discretizations of coupled Darcy-Stokes flow. Numer. Methods Partial Differ. Equ. 25(2), 311–326 (2009)
Layton W.J., Schieweck F., Yotov I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)
Lions, P.-L.: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), pp. 202–223. SIAM, Philadelphia (1990)
Mardal K.A., Tai X.C., Winther R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)
Masud A.: A stabilized mixed finite element method for Darcy-Stokes flow. Int. J. Numer. Methods Fluids 54(6-8), 665–681 (2007)
Mu M., Xu J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)
Nassehi V., Petera J.: A new least-squares finite element model for combined Navier-Stokes and darcy flows in geometrically complicated domains with solid and porous boundaries. Int. J. Numer. Methods Eng. 37(9), 1609–1620 (1994)
Popov P., Efendiev Y., Qin G.: Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun. Comput. Phys. 6(1), 162–184 (2009)
Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. In: Numerical Mathematics and Scientific Computation. Oxford Science Publications, New York (1999)
Rivière B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(23), 479–500 (2005)
Rivière B., Yotov I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)
Rui H., Zhang R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198(33–36), 2692–2699 (2009)
Saffman P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)
Salinger A.G., Aris R., Derby J.J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Methods Fluids 18(12), 1185–1209 (1994)
Tai X.C., Winther R.: A discrete de Rham complex with enhanced smoothness. CALCOLO 43(4), 287–306 (2006)
Tlupova S., Cortez R.: Boundary integral solutions of coupled Stokes and Darcy flows. J. Comput. Phys. 228(1), 158–179 (2009)
Urquiza J.M., N’Dri D., Garon A., Delfour M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58(5), 525–538 (2008)
Xie X., Xu J., Xue G.: Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models. J. Comput. Math. 26(3), 437–455 (2008)
Xu J., Zou J.: Some nonoverlapping domain decomposition methods. SIAM Rev. 40(4), 857–914 (1998)
Xu X., Zhang S.: A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations. SIAM J. Sci. Comput. 32(2), 855–874 (2010)
Zhang S., Xie X., Chen Y.: Low order nonconforming rectangular finite element methods for Darcy-Stokes problems. J. Comput. Math. 27(2–3), 400–424 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported in part by the CMG program of the National Science Foundation under grant numbers DMS-0620035 (for MG, XH, and XW) and DMS-0914554 (for YC).
Rights and permissions
About this article
Cite this article
Cao, Y., Gunzburger, M., He, X. et al. Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011). https://doi.org/10.1007/s00211-011-0361-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-011-0361-8
Mathematics Subject Classification (2010)
- 65M55
- 65M12
- 65M15
- 65M60
- 35M10
- 35Q35
- 76D07
- 76S05