Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Numerische Mathematik
  3. Article

Convergence and quasi-optimality of an adaptive finite element method for controlling L 2 errors

  • Open access
  • Published: 15 December 2010
  • volume 117, pages 185–218 (2011)
Download PDF

You have full access to this open access article

Numerische Mathematik Aims and scope Submit manuscript
Convergence and quasi-optimality of an adaptive finite element method for controlling L 2 errors
Download PDF
  • Alan Demlow1 &
  • Rob Stevenson2 
  • 675 Accesses

  • 26 Citations

  • Explore all metrics

Cite this article

Abstract

In this paper, a contraction property is proved for an adaptive finite element method for controlling the global L 2 error on convex polyhedral domains. Furthermore, it is shown that the method converges in L 2 with the best possible rate. The method that is analyzed is the standard adaptive method except that, if necessary, additional refinements are made to keep the meshes sufficiently mildly graded. This modification does not compromise the quasi-optimality of the resulting algorithm.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Babuška I., Osborn J.: Analysis of finite element methods for second order boundary value problems using mesh dependent norms. Numer. Math. 34, 41–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Binev P., Dahmen W., DeVore R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

  4. Cascon J., Kreuzer C., Nochetto R.H., Siebert K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demlow A.: Convergence of an adaptive finite element method for controlling local energy errors. SIAM J. Numer. Anal. 48(2), 470–497 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eriksson K.: An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4, 313–329 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eriksson K., Johnson C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L ∞ L 2 and L ∞ L ∞. SIAM J. Numer. Anal. 32, 706–740 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liao X., Nochetto R.H.: Local a posteriori error estimates and adaptive control of pollution effects. Numer. Methods Partial Differ. Equ. 19, 421–442 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Maubach J.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mekchay K., Nochetto R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  12. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002) (electronic) (2003) Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38(2), 466–488 (2000) (electronic); MR1770058 (2001g:65157)]

    Google Scholar 

  13. Morin, P., Siebert, K., Veeser, A.: Convergence of Finite Elements Adapted for Weaker Norms. Applied and Industrial Mathematics in Italy II. Ser. Adv. Math. Appl. Sci., vol. 75, pp. 468–479. World Sci. Publ., Hackensack, NJ (2007)

  14. Morin P., Siebert K., Veeser A.: A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18, 707–737 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nitsche J.A., Schatz A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comput. 28, 937–958 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nochetto, R., Siebert, K., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, pp. 409–542. Springer, Berlin (2009)

  17. Schmidt, A., Siebert, K.G.: Design of adaptive finite element software. The finite element toolbox ALBERTA, with 1 CD-ROM (Unix/Linux). Lecture Notes in Computational Science and Engineering, vol. 42, pp. xii+315. Springer, Berlin (2005)

  18. Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stevenson R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stevenson R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Traxler C.T.: An algorithm for adaptive mesh refinement in n dimensions. Computing 59, 115–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Verfürth R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

  23. Wihler T.P.: Weighted L 2-norm a posteriori error estimation of FEM in polygons. Int. J. Numer. Anal. Model. 4, 100–115 (2007)

    MATH  MathSciNet  Google Scholar 

  24. Xu J., Zhou A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    MATH  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, KY, 40506-0027, USA

    Alan Demlow

  2. Korteweg-de Vries (KdV) Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands

    Rob Stevenson

Authors
  1. Alan Demlow
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rob Stevenson
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alan Demlow.

Additional information

A. Demlow was partially supported by National Science Foundation Grant DMS-0713770.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Demlow, A., Stevenson, R. Convergence and quasi-optimality of an adaptive finite element method for controlling L 2 errors. Numer. Math. 117, 185–218 (2011). https://doi.org/10.1007/s00211-010-0349-9

Download citation

  • Received: 09 November 2009

  • Revised: 05 August 2010

  • Published: 15 December 2010

  • Issue Date: February 2011

  • DOI: https://doi.org/10.1007/s00211-010-0349-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2000)

  • 65N15
  • 65N30
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature