Skip to main content
Log in

Error estimates for the numerical approximation of a quaslinear Neumann problem under minimal regularity of the data

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The finite element based approximation of a quasilinear elliptic equation of non monotone type with Neumann boundary conditions is studied. Minimal regularity assumptions on the data are imposed. The consideration is restricted to polygonal domains of dimension two and polyhedral domains of dimension three. Finite elements of degree k ≥ 1 are used to approximate the equation. Error estimates are established in the L 2(Ω) and H 1(Ω) norms for convex and non-convex domains. The issue of uniqueness of a solution to the approximate discrete equation is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett J., Elliot C.: A practical finite element approximation of a semi-definite Neumann problem on a curved domain. Numer. Math. 51, 23–36 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brenner S., Scott L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1984)

    Google Scholar 

  3. Casas, E., Dhamo, V.: Optimality Conditions for a class of optimal boundary control problems with quasilinear elliptic equations (2010, submitted)

  4. Casas E., Mateos M., Tröltzsch F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–220 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casas, E., Sokolowski, J.: Approximation of boundary control problems on curved domains (2009, submitted)

  6. Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of optimal control problems governed by a class of quasilinear elliptic equations (2009, submitted)

  7. Ciarlet P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Dauge M.: Elliptic boundary Value Problems on Corner Domains—Smoothness and Asymtotics of Solutions. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

    Google Scholar 

  9. Dauge M.: Neumann and mixed problems on curvilinear polyhedra. Integral Equ. Oper. Theory 15(2), 227–261 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Douglas J.J., Dupont T.: A Galerkin method for a Nonlinear Dirichlet problem. Math. Comp. 29(131), 689–696 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Douglas J.J., Dupont T., Wahlbin L.: The stability in Lq of the L2-projection into finite element function spaces. Numerische Mathematik 23, 193–197 (1975)

    Article  MATH  Google Scholar 

  12. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  13. Grisvard P.: Contrôlabilité exacte des solutions de l’équation des ondes en présence de singularités. J. Math. Pures Appl. 68, 215–259 (1989)

    MATH  MathSciNet  Google Scholar 

  14. Hlaváček I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coeffcients. J. Math. Anal. Appl. 212, 452–466 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hlaváček I., Křížek M., Malý J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184, 168–189 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kenig, C.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. vol. 83 of CBMS, American Mathematical Society, Providence, Rhode Island (1994)

  17. Liu L., Křížek M., Neittaanmäki P.: Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type. Appl. Math. Praha 41(6), 467–478 (1996)

    MATH  Google Scholar 

  18. Murthy M.K.V., Stampacchia G.: A variational inequality with mixed boundary conditions. Israel J. Math. 13, 188–224 (1972)

    Article  MathSciNet  Google Scholar 

  19. Murthy M.R.V., Stampacchia G.: Boundary value problems for some degenerate-elliptic operators. Annali di Matematica Pura ed Applicata 80, 1–122 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stampacchia G.: Problemi al contorno ellittici, con dati discontinui, dotati di soluzioni hölderiane. (Italian). Ann. Mat. Pura Appl. IV. Ser. 51, 1–38 (1960)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Casas.

Additional information

E. Casas was partially supported by the Spanish Ministry of Science and Innovation under projects MTM2008-04206 and “Ingenio Mathematica (i-MATH)” CSD2006-00032 (Consolider Ingenio 2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, E., Dhamo, V. Error estimates for the numerical approximation of a quaslinear Neumann problem under minimal regularity of the data. Numer. Math. 117, 115–145 (2011). https://doi.org/10.1007/s00211-010-0344-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0344-1

Mathematics Subject Classification (2000)

Navigation