Skip to main content
Log in

Convex backscattering support in electric impedance tomography

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper reinvestigates a recently introduced notion of backscattering for the inverse obstacle problem in impedance tomography. Under mild restrictions on the topological properties of the obstacles, it is shown that the corresponding backscatter data are the boundary values of a function that is holomorphic in the exterior of the obstacle(s), which allows to reformulate the obstacle problem as an inverse source problem for the Laplace equation. For general obstacles, the convex backscattering support is then defined to be the smallest convex set that carries an admissible source, i.e., a source that yields the given (backscatter) data as the trace of the associated potential. The convex backscattering support can be computed numerically; numerical reconstructions are included to illustrate the viability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brühl M.: Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32, 1327–1341 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bryan K.: Numerical recovery of certain discontinuous electrical conductivities. Inverse Probl. 7, 827–840 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dautray R., Lions J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2. Springer, Berlin (1988)

    Google Scholar 

  4. Gebauer B.: The factorization method for real elliptic problems. Z. Anal. Anwendungen 25, 81–102 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Haddar H., Kusiak S., Sylvester J.: The convex back-scattering support. SIAM J. Appl. Math. 66, 591–615 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hanke M.: On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Probl. 24, 045005 (2008)

    Article  MathSciNet  Google Scholar 

  7. Hanke M., Hyvönen N., Lehn M., Reusswig S.: Source supports in electrostatics. BIT Numer. Math. 48, 245–264 (2008)

    Article  MATH  Google Scholar 

  8. Hanke M., Hyvönen N., Reusswig S.: Convex source support and its application to electric impedance tomography. SIAM J. Imaging Sci. 1, 364–378 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hanke M., Hyvönen N., Reusswig S.: An inverse backscatter problem for electric impedance tomography. SIAM J. Math. Anal. 41, 1948–1966 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hanke M., Kirsch A.: Samplingmethods. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging, Springer, New York (2010)

    Google Scholar 

  11. Henrici P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1974)

    MATH  Google Scholar 

  12. Hettlich F., Rundell W.: The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Probl. 14, 67–82 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hyvönen N.: Complete electrode model of electrical impedance tomography: approximation properties and characterization of inclusions. SIAM J. Appl. Math. 64, 902–931 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hyvönen N.: Application of a weaker formulation of the factorization method to the characterization of absorbing inclusions in optical tomography. Inverse Probl. 21, 1331–1343 (2005)

    Article  MATH  Google Scholar 

  15. Hyvönen N.: Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography. Adv. Appl. Math. 39, 197–221 (2007)

    Article  MATH  Google Scholar 

  16. Ito K., Kunisch K., Li Z.: Level-set function approach to an inverse interface problem. Inverse Probl. 17, 1225–1242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kang H., Seo J.K., Sheen D.: Numerical identification of discontinuous conductivity coefficients. Inverse Probl. 13, 113–123 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kirsch A.: The factorization method for a class of inverse elliptic problems. Math. Nachr. 278, 258–277 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kress R.: Inverse Dirichlet problem and conformal mapping. Math. Comput. Simul. 66, 255–265 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kress R., Kühn L.: Linear sampling methods for inverse boundary value problems in potential theory. Appl. Numer. Math. 43, 161–173 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kress R., Rundell W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Probl. 21, 1207–1223 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kusiak S., Sylvester J.: The scattering support. Comm. Pure Appl. Math. 56, 1525–1548 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lions J.-L., Magenes E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Google Scholar 

  24. Rundell W.: Recovering an obstacle and its impedance from Cauchy data. Inverse Probl. 24, 045003 (2008)

    Article  MathSciNet  Google Scholar 

  25. Tutschke W., Vasudeva H.L.: An Introduction to Complex Analysis: Classical and Modern Approaches. Chapman & Hall, Boca Raton (2005)

    MATH  Google Scholar 

  26. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hanke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanke, M., Hyvönen, N. & Reusswig, S. Convex backscattering support in electric impedance tomography. Numer. Math. 117, 373–396 (2011). https://doi.org/10.1007/s00211-010-0320-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0320-9

Mathematics Subject Classification (2000)

Navigation