Skip to main content

Advertisement

SpringerLink
  • Numerische Mathematik
  • Journal Aims and Scope
  • Submit to this journal
A convergent overlapping domain decomposition method for total variation minimization
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A Finite Element Nonoverlapping Domain Decomposition Method with Lagrange Multipliers for the Dual Total Variation Minimizations

04 November 2019

Chang-Ock Lee & Jongho Park

An overlapping domain decomposition framework without dual formulation for variational imaging problems

22 June 2020

Jongho Park

Domain Decomposition Methods Using Dual Conversion for the Total Variation Minimization with $$L^1$$ L 1 Fidelity Term

26 July 2018

Chang-Ock Lee, Changmin Nam & Jongho Park

Discrete Total Variation with Finite Elements and Applications to Imaging

25 October 2018

Marc Herrmann, Roland Herzog, … Gerd Wachsmuth

A unified approach for a 1D generalized total variation problem

13 March 2021

Cheng Lu & Dorit S. Hochbaum

Preconditioned Three-Operator Splitting Algorithm with Applications to Image Restoration

03 August 2022

Yuchao Tang, Meng Wen & Tieyong Zeng

Accelerated Variational PDEs for Efficient Solution of Regularized Inversion Problems

30 September 2019

Minas Benyamin, Jeff Calder, … Anthony Yezzi

A parallel Tseng’s splitting method for solving common variational inclusion applied to signal recovery problems

13 November 2021

Raweerote Suparatulatorn, Watcharaporn Cholamjiak, … Thanasak Mouktonglang

A fixed-point algorithm for second-order total variation models in image denoising

22 January 2019

Tianling Gao, Xiaofei Wang, … Zhiguang Zhang

Download PDF
  • Open Access
  • Published: 22 June 2010

A convergent overlapping domain decomposition method for total variation minimization

  • Massimo Fornasier1,
  • Andreas Langer1 &
  • Carola-Bibiane Schönlieb2 

Numerische Mathematik volume 116, pages 645–685 (2010)Cite this article

  • 792 Accesses

  • 34 Citations

  • Metrics details

Abstract

In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation constraint. To our knowledge, this is the first successful attempt of addressing such a strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation minimization. We provide several numerical experiments, showing the successful application of the algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting problems, respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, xviii. Clarendon Press, Oxford (2000)

  2. Aubert G., Kornprobst P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variation. Springer, Berlin (2002)

    Google Scholar 

  3. Bauschke, H.H., Borwein, J.M., Lewis, A.S.: The method of cyclic projections for closed convex sets in Hilbert space. Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), pp 1–38, Contemp. Math., 204, Amer. Math. Soc., Providence (1997)

  4. Braides A.: Γ-Convergence for Beginners, No.22 in Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2002)

    Google Scholar 

  5. Bruck R.E., Reich S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3(4), 459–470 (1977)

    MATH  MathSciNet  Google Scholar 

  6. Candès E.J.: Compressive sampling. Int. Congress of Mathematics 3, 1433–1452 (2006)

    Google Scholar 

  7. Candès E.J., Romberg J., Tao T.: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  Google Scholar 

  8. Candès E.J., Tao T.: Near optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  9. Carstensen C.: Domain decomposition for a non-smooth convex minimalization problems and its application to plasticity. Numer. Linear Algebra Appl. 4(3), 177–190 (1998)

    Article  MathSciNet  Google Scholar 

  10. Chambolle A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  11. Chambolle A., Darbon J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84(3), 288–307 (2009)

    Article  Google Scholar 

  12. Chambolle A., Lions P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chan T.F., Golub G.H., Mulet P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chan T.F., Mathew T.P.: Domain decomposition algorithms. Acta Numer. 3, 61–143 (1994)

    Article  MathSciNet  Google Scholar 

  15. Combettes P.L., Wajs V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Darbon J., Sigelle M.: A fast and exact algorithm for total variation minimization. IbPRIA 2005 3522(1), 351–359 (2005)

    Google Scholar 

  17. Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problems. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Daubechies I., DeVore R.A., Fornasier M., Güntürk C.S.: Iteratively re-weighted least squares minimization for sparse recovery. Comm. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Daubechies I., Teschke G., Vese L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Imaging 1(1), 29–46 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Dobson D., Vogel C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34(5), 1779–1791 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Donoho D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  22. Ekeland, I., Temam, R.: Convex analysis and variational problems. Translated by Minerva Translations, Ltd., London., Studies in Mathematics and its Applications, vol. 1. North-Holland Publishing Company/American Elsevier Publishing Company, Inc., Oxford/New York (1976)

  23. Engl H.W., Hanke M., Neubauer A.: Regularization of inverse problems. Mathematics and its Applications (Dordrecht), vol. 375. Kluwer, Dordrecht (1996)

    Google Scholar 

  24. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, (1992)

  25. Fornasier M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Problems 23(6), 2505–2526 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fornasier M., Schönlieb C.-B.: Subspace correction methods for total variation and ℓ1−minimization. SIAM J. Numer. Anal. 47(5), 3397–3428 (2009)

    Article  MathSciNet  Google Scholar 

  27. Goldstein T., Osher S.: The split Bregman method for L 1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hiriart-Urruty J.-B.H., Lemaréchal C.: Convex Analysis and Minimization Algorithms I, vol. 305 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1996)

    Google Scholar 

  29. Lustig M., Donoho D., Pauly J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  30. Müller, J.: Parallel Methods for Nonlinear Imaging Techniques, Master thesis, University of Münster, (2008)

  31. Nesterov Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Osher S., Burger M., Goldfarb D., Xu J., Yin W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rudin L.I., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  34. Schönlieb, C.-B.: Total variation minimization with an H −1 constraint, CRM Series 9, Singularities in Nonlinear Evolution Phenomena and Applications proceedings, Scuola Normale Superiore Pisa 2009, 201–232

  35. Tai X.-C., Tseng P.: Convergence rate analysis of an asynchronous space decomposition method for convex minimization. Math. Comp. 71(239), 1105–1135 (2004)

    Article  MathSciNet  Google Scholar 

  36. Tai X.-C., Xu J.: Global convergence of subspace correction methods for convex optimization problems. Math. Comp. 71(237), 105–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Vese L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Warga J.: Minimizing certain convex functions. J. Soc. Indust. Appl. Math. 11, 588–593 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  39. Weiss P., Blanc-Féraud L., Aubert G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu, J., Tai, X.-C., Wang, L.-L.: A Two-level domain decomposition method for image restoration, UCLA Computational and Applied Mathematics Report 09-92, November 2009

  41. Matlab code and numerical experiments of the methods provided in this paper can be downloaded at the web-page: http://homepage.univie.ac.at/carola.schoenlieb/webpage_tvdode/tv_dode_numerics.htm

Download references

Author information

Authors and Affiliations

  1. Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, 4040, Linz, Austria

    Massimo Fornasier & Andreas Langer

  2. Institute for Numerical and Applied Mathematics, University of Göttingen, Lotzestr. 16-18, 37083, Göttingen, Germany

    Carola-Bibiane Schönlieb

Authors
  1. Massimo Fornasier
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andreas Langer
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Carola-Bibiane Schönlieb
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Massimo Fornasier.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Fornasier, M., Langer, A. & Schönlieb, CB. A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116, 645–685 (2010). https://doi.org/10.1007/s00211-010-0314-7

Download citation

  • Received: 25 May 2009

  • Revised: 13 January 2010

  • Published: 22 June 2010

  • Issue Date: October 2010

  • DOI: https://doi.org/10.1007/s00211-010-0314-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2000)

  • 65K10
  • 65N55
  • 65N21
  • 65Y05
  • 90C25
  • 52A41
  • 49M30
  • 49M27
  • 68U10
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.