Skip to main content
Log in

Quasi Extended Chebyshev spaces and weight functions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We recently showed that the class of Quasi Extended Chebyshev spaces is the largest class of sufficiently differentiable functions permitting design. In previous articles we mentioned a simple procedure to build such spaces by means of both generalised derivatives associated with non-vanishing weight functions and two-dimensional Chebyshev spaces. In the present one we prove that, conversely, on a closed bounded interval, any Quasi Extended Chebyshev space can be obtained via the latter procedure. We then draw a few interesting consequences from the latter result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carnicer J.-M., Peña J.-M.: Totally positive bases for shape preserving curve design and optimality of B-splines. Comp. Aided Geom. Des. 11, 633–654 (1994)

    Article  Google Scholar 

  2. Carnicer, J.-M., Peña, J.-M.: Total positivity and optimal bases. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp 133–155. Kluwer (1996)

  3. Carnicer J.-M., Mainar E., Peña J.-M.: Critical length for design purposes and extended chebyshev spaces. Constr. Approx. 20, 55–71 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coppel, W.A.: Disconjugacy, Lecture Notes in Mathematics, vol. 220, Springer, Berlin (1971)

  5. Costantini P.: On monotone and convex spline interpolation. Math. Comp. 46, 203–214 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Costantini, P.: Shape preserving interpolation with variable degree polynomial splines. In: Hoscheck, J., Kaklis, P. (eds.) Advanced Course on FAIRSHAPE, pp 87–114. B.G. Teubner, Stuttgart (1996)

  7. Costantini P.: Curve and surface construction using variable degree polynomial splines. Comp. Aided Geom. Des 17, 419–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costantini P., Lyche T., Manni C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodman, T.N.T.: Total positivity and the shape of curves. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp 157–186, Kluwer (1996)

  10. Goodman T.N.T., Mazure M.-L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaklis P.D., Pandelis D.G.: Convexity preserving polynomial splines of non-uniform degree. IMA J. Num. Anal. 10, 223–234 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Karlin S.J., Studden, W.J.: Tchebycheff Systems: with applications in analysis and statistics, Wiley Interscience, NY (1966)

  13. Mazure M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mazure M.-L.: Quasi-Chebyshev splines with connexion matrices. Application to variable degree polynomial splines. Comp. Aided Geom. Design 18, 287–298 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mazure M.-L.: Blossoms and optimal bases. Adv. Comp. Math. 20, 177–203 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mazure M.-L.: Blossoms of generalized derivatives in Chebyshev spaces. J. Approx. Theory 131, 47–58 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mazure M.-L.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mazure, M.-L.: Ready-to-blossom bases in Chebyshev spaces. In: Jetter, K., Buhmann, M., Haussmann, W., Schaback, R., Stoeckler, J. (eds.) Topics in Multivariate Approximation and Interpolation, pp 109–148. Elsevier (2006)

  19. Mazure M.-L.: Extended Chebyshev Piecewise spaces characterised via weight functions. J. Approx. Theory 145, 33–54 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mazure M.-L.: On dimension elevation in Quasi Extended Chebyshev spaces. Numer. Math. 109, 459–475 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mazure M.-L.: Which spaces for design?. Numer. Math. 110, 357–392 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mazure M.-L.: Bernstein-type operators in Chebyshev spaces. Numer. Alg. 52, 93–128 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mazure M.-L.: On differentiation formulae for Chebyshevian Bernstein and B-spline bases, Jaén. J. Approx. 1, 111–143 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Mazure, M.-L.: Finding all weight functions associated with a given Extended Chebyshev space. J. Approx. Theory (to appear)

  25. Mazure, M.-L.: Chebyshev-Schoenberg operators (preprint)

  26. Mazure M.-L., Laurent P.-J.: Polynomial Chebyshev splines. Comp. Aided Geom. Design 16, 317–343 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pottmann H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10, 181–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ramshaw L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6, 323–358 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schumaker, L.L.: Spline Functions, Wiley Interscience, NY (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazure, ML. Quasi Extended Chebyshev spaces and weight functions. Numer. Math. 118, 79–108 (2011). https://doi.org/10.1007/s00211-010-0312-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0312-9

Mathematics Subject Classification (2000)

Navigation