Skip to main content

Shifted GMRES for oscillatory integrals

Abstract

None of the existing methods for computing the oscillatory integral \({\int_a^b f(x){\rm e}^{{\rm i}\omega g(x)}{\rm d}x}\) achieve all of the following properties: high asymptotic order, stability, avoiding deformation into the complex plane and insensitivity to oscillations in f. We present a new method that satisfies these properties, based on applying the gmres algorithm to a shifted linear differential operator.

This is a preview of subscription content, access via your institution.

References

  1. Abramowitz, M., Stegun, I.; Handbook of Mathematical Functions; National Bureau of Standards Appl. Maths Series, #55. U.S. Govt. Printing Office, Washington, DC (1970)

  2. Adam G.H., Nobile A.: Product integration rules at Clenshaw–Curtis and related points: a robust implementation. IMA J. Numer. Anal. 11, 271–296 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakhvalov N.S., Vasil’eva L.G.: Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures. USSR Comput. Maths Math. Phys. 8, 241–249 (1968)

    Article  Google Scholar 

  4. Battles Z., Trefethen L.N.: An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clenshaw C.W., Curtis A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  6. Datta B.N., Saad Y.: Arnoldi methods for large Sylvester-like observer matrix equations and an associated algorithm for partial pole assignment. Linear Algebra Appl. 154–156, 225–244 (1991)

    Article  MathSciNet  Google Scholar 

  7. Evans G.A., Webster J.R.: A high order progressive method for the evaluation of irregular oscillatory integrals. Appl. Num. Maths 23, 205–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Evans G.A., Webster J.R.: A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comp. Appl. Maths 112, 55–69 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frommer A., Glässner U.: Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput. 19, 15–26 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gil A., Segura J., Temme N.M.: Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30, 11–23 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hochbruck M., Lubich C.: Error analysis of Krylov methods in a nutshell. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huybrechs D., Vandewalle S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Num. Anal. 44, 1026–1048 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Iserles A., Nørsett S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. Royal Soc. A 461, 1383–1399 (2005)

    Article  MATH  Google Scholar 

  14. Iserles A., Nørsett S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44, 755–772 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiannbing L., Xuesong W., Tao W.: A universal solution to one-dimensional oscillatory integrals. Sci. China 51, 1614–1622 (2008)

    Article  Google Scholar 

  16. Levin D.: Procedures for computing one and two-dimensional integrals of functions with rapid irregular oscillations. Maths Comp. 38(158), 531–538 (1982)

    Article  MATH  Google Scholar 

  17. Littlewood R.K., Zakian V.: Numerical evaluation of Fourier integrals. J. Inst. Math. Appl. 18, 331–339 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lozier, D.W., Olver, F.W.J.: Numerical evaluation of special functions. In: Gautschi, W. (ed.) AMS Proceedings of Symposia in Applied Mathematics, pp. 79–125 (1994)

  19. Nevanlinna O.: Convergence of Iterations for Linear Equations. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  20. Olver S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Num. Anal. 26, 213–227 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Olver S.: Moment-free numerical approximation of highly oscillatory integrals with stationary points. Euro. J. Appl. Maths 18, 435–447 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Olver S.: Numerical approximation of highly oscillatory integrals. Ph.D. Thesis, University of Cambridge, Cambridge (2008)

    Google Scholar 

  23. Olver, S.: GMRES for the differentiation operator. SIAM J. Numer. Anal. (2009, to appear)

  24. Patterson T.N.L.: On high precision methods for the evaluation of Fourier integrals with finite and infinite limits. Numer. Math. 24, 41–52 (1976)

    Article  MathSciNet  Google Scholar 

  25. Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003)

  26. Saad Y., Schultz M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Trefethen, L.N.: Householder triangularization of a quasimatrix. IMA J. Numer. Anal. (2008, to appear)

  28. Trefethen L.N.: Is Gauss quadrature better than Clenshaw-Curtis. SIAM Rev. 50, 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Trefethen L.N., Embree M.: Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  30. Xiang S.: Efficient Filon-type methods for \({\int_a^b f(x){\rm e}^{{\rm i}\omega g(x)}{\rm d}x}\). Numer. Math. 105, 633–658 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheehan Olver.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olver, S. Shifted GMRES for oscillatory integrals. Numer. Math. 114, 607–628 (2010). https://doi.org/10.1007/s00211-009-0264-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0264-0

Mathematics Subject Classification (2000)

  • 65D32