Abstract
None of the existing methods for computing the oscillatory integral \({\int_a^b f(x){\rm e}^{{\rm i}\omega g(x)}{\rm d}x}\) achieve all of the following properties: high asymptotic order, stability, avoiding deformation into the complex plane and insensitivity to oscillations in f. We present a new method that satisfies these properties, based on applying the gmres algorithm to a shifted linear differential operator.
This is a preview of subscription content, access via your institution.
References
Abramowitz, M., Stegun, I.; Handbook of Mathematical Functions; National Bureau of Standards Appl. Maths Series, #55. U.S. Govt. Printing Office, Washington, DC (1970)
Adam G.H., Nobile A.: Product integration rules at Clenshaw–Curtis and related points: a robust implementation. IMA J. Numer. Anal. 11, 271–296 (1991)
Bakhvalov N.S., Vasil’eva L.G.: Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures. USSR Comput. Maths Math. Phys. 8, 241–249 (1968)
Battles Z., Trefethen L.N.: An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)
Clenshaw C.W., Curtis A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)
Datta B.N., Saad Y.: Arnoldi methods for large Sylvester-like observer matrix equations and an associated algorithm for partial pole assignment. Linear Algebra Appl. 154–156, 225–244 (1991)
Evans G.A., Webster J.R.: A high order progressive method for the evaluation of irregular oscillatory integrals. Appl. Num. Maths 23, 205–218 (1997)
Evans G.A., Webster J.R.: A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comp. Appl. Maths 112, 55–69 (1999)
Frommer A., Glässner U.: Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput. 19, 15–26 (1998)
Gil A., Segura J., Temme N.M.: Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30, 11–23 (2002)
Hochbruck M., Lubich C.: Error analysis of Krylov methods in a nutshell. SIAM J. Numer. Anal. 34, 1911–1925 (1997)
Huybrechs D., Vandewalle S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Num. Anal. 44, 1026–1048 (2006)
Iserles A., Nørsett S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. Royal Soc. A 461, 1383–1399 (2005)
Iserles A., Nørsett S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44, 755–772 (2004)
Jiannbing L., Xuesong W., Tao W.: A universal solution to one-dimensional oscillatory integrals. Sci. China 51, 1614–1622 (2008)
Levin D.: Procedures for computing one and two-dimensional integrals of functions with rapid irregular oscillations. Maths Comp. 38(158), 531–538 (1982)
Littlewood R.K., Zakian V.: Numerical evaluation of Fourier integrals. J. Inst. Math. Appl. 18, 331–339 (1976)
Lozier, D.W., Olver, F.W.J.: Numerical evaluation of special functions. In: Gautschi, W. (ed.) AMS Proceedings of Symposia in Applied Mathematics, pp. 79–125 (1994)
Nevanlinna O.: Convergence of Iterations for Linear Equations. Birkhäuser, Basel (1993)
Olver S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Num. Anal. 26, 213–227 (2006)
Olver S.: Moment-free numerical approximation of highly oscillatory integrals with stationary points. Euro. J. Appl. Maths 18, 435–447 (2007)
Olver S.: Numerical approximation of highly oscillatory integrals. Ph.D. Thesis, University of Cambridge, Cambridge (2008)
Olver, S.: GMRES for the differentiation operator. SIAM J. Numer. Anal. (2009, to appear)
Patterson T.N.L.: On high precision methods for the evaluation of Fourier integrals with finite and infinite limits. Numer. Math. 24, 41–52 (1976)
Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003)
Saad Y., Schultz M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Trefethen, L.N.: Householder triangularization of a quasimatrix. IMA J. Numer. Anal. (2008, to appear)
Trefethen L.N.: Is Gauss quadrature better than Clenshaw-Curtis. SIAM Rev. 50, 67–87 (2008)
Trefethen L.N., Embree M.: Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)
Xiang S.: Efficient Filon-type methods for \({\int_a^b f(x){\rm e}^{{\rm i}\omega g(x)}{\rm d}x}\). Numer. Math. 105, 633–658 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Olver, S. Shifted GMRES for oscillatory integrals. Numer. Math. 114, 607–628 (2010). https://doi.org/10.1007/s00211-009-0264-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-009-0264-0
Mathematics Subject Classification (2000)
- 65D32