Skip to main content
Log in

Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method required a parameterization of the variational formulation. In order to avoid this difficulty, we use a mixed variational setting instead of the parameterization, which allows us to handle the divergence-free constraint on the field in a straightforward manner. The numerical analysis of the method is carried out, and numerical examples are provided to show the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999)

  3. Assous F., Ciarlet P. Jr, Garcia E., Segré J.: Time-dependent Maxwell’s equations with charges in singular geometries. Comput. Methods Appl. Mech. Eng. 196, 665–681 (2006)

    Article  MATH  Google Scholar 

  4. Assous F., Ciarlet P. Jr, Segré J.: Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys. 161, 218–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Assous F., Ciarlet P. Jr, Sonnendrücker E.: Resolution of the Maxwell equations in a domain with reentrant corners. Modél. Math. Anal. Numér. 32, 359–389 (1998)

    MATH  Google Scholar 

  6. Assous F., Degond P., Heintzé E., Raviart P.-A., Segré J.: On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North Holland, Amsterdam (1991)

  8. Boffi D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34, 664–670 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boffi, D.: Compatible discretizations for eigenvalue problems. In: Compatible Spatial Discretizations, IMA Volumes in Mathematics and its Applications, vol. 142, pp. 121–142. Springer, Berlin (2006)

  10. Boffi D., Brezzi F., Gastaldi L.: On the convergence of eigenvalues for mixed formulations. Annali Sc. Norm. Sup. Pisa Cl. Sci. 25, 131–154 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Brenner S., Li F., Sung L.-Y.: A locally divergence-free interior penalty method for two dimensional curl–curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer, Berlin (1991)

  13. Ciarlet P. Jr: Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Eng. 194, 559–586 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ciarlet P. Jr, Garcia E., Zou J.: Solving Maxwell equations in 3D prismatic domains. C. R. Acad. Sci. Paris, Ser. I 339, 721–726 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Ciarlet P. Jr, Girault V.: Inf-sup condition for the 3D, P 2isoP 1 Taylor–Hood finite element; application to Maxwell equations. C. R. Acad. Sci. Paris, Ser. I 335, 827–832 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Ciarlet, P. Jr., Hechme, G.: Mixed, augmented variational formulations for Maxwell’s equations: numerical analysis via the macroelement technique. Numer. Math. (submitted)

  17. Ciarlet P. Jr, Hechme G.: Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comput. Methods Appl. Mech. Eng. 198, 358–365 (2008)

    MathSciNet  Google Scholar 

  18. Costabel M.: A coercive bilinear form for Maxwell’s equations. J. Math. An. Appl. 157, 527–541 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Costabel M., Dauge M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol. 31, pp. 125–161. Springer, Berlin (2003)

  21. Costabel M., Dauge M., Schwab C.: Exponential convergence of hp-FEM for Maxwell’s equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15, 575–622 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dauge, M.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions (2004). See Monique Dauge’s personal web page at the location http://perso.univ-rennes1.fr/monique.dauge/core/index.html

  23. Garcia, E.: Solution to the instationary Maxwell equations with charges in non-convex domains (in French). Ph.D. Thesis, Université Paris VI, France (2002)

  24. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

  25. Hazard C., Lohrengel S.: A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics. SIAM J. Appl. Math. 40, 1021–1040 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Heintzé, E.: Solution to the 3D instationary Maxwell equations with conforming finite elements (in French). Ph.D. Thesis, Université Paris VI, France (1992)

  27. Jamelot E.: Éléments finis nodaux pour les équations de Maxwell. C. R. Acad. Sci. Paris, Sér. I 339, 809–814 (2004)

    MathSciNet  Google Scholar 

  28. Jamelot, E.: Solution to Maxwell equations with continuous Galerkin finite elements (in French). Ph.D. Thesis, École Polytechnique, Palaiseau, France (2005)

  29. Labrunie, S.: The Fourier singular complement method for Maxwell equations in axisymmetric domains (in French). Technical Report 2004-42, Institut Elie Cartan, Nancy I University, Vandœuvre-lès-Nancy, France (2004)

  30. Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sorokina T., Worsey A.J.: A multivariate Powell–Sabin interpolant. Adv. Comput. Math. 29, 71–89 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Weber C.: A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2, 12–25 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ciarlet Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffa, A., Ciarlet, P. & Jamelot, E. Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numer. Math. 113, 497–518 (2009). https://doi.org/10.1007/s00211-009-0246-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0246-2

Mathematics Subject Classification (2000)

Navigation