Abstract
In this contribution we analyze a generalization of the heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. The method was originally introduced by E and Engquist (Commun Math Sci 1(1):87–132, 2003) for homogenization problems in fixed domains. It is based on a standard finite element approach on the macroscale, where the stiffness matrix is computed by solving local cell problems on the microscale. A-posteriori error estimates are derived in L 2(Ω) by reformulating the problem into a discrete two-scale formulation (see also, Ohlberger in Multiscale Model Simul 4(1):88–114, 2005) and using duality methods afterwards. Numerical experiments are given in order to numerically evaluate the efficiency of the error estimate.
This is a preview of subscription content, access via your institution.
References
Abdulle A.: On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4(2), 447–459 (2005) (electronic)
Abdulle A., E W.: Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191(1), 18–39 (2003)
Abdulle, A., Schwab, C.: Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3(1), 195–220 (2004/2005) (electronic)
Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)
Alt H.W.: 4Lineare Funktionalanalysis. Springer, Berlin (2002)
Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, vol. 5. North-Holland Publishing Co., Amsterdam (1978)
Ciarlet, P.G.: The finite element method for elliptic problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)
Conca C., Gómez D., Lobo M., Pérez M.E.: Homogenization of periodically perforate media. Indiana Univ. Math. J. 48(4), 1447–1470 (1999)
Esposito A.C., D’Apice C., Gaudiello A.: A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes. Asymptot. Anal. 31(3–4), 297–316 (2002)
E W., Engquist B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)
E W., Engquist B.: Multiscale modeling and computation. Notices Am. Math. Soc. 50(9), 1062–1070 (2003)
E, W., Engquist, B.: The heterogeneous multi-scale method for homogenization problems. In: Multiscale Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 44, pp. 89–110. Springer, Berlin (2005)
E W., Ming P., Zhang P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18(1), 121–156 (2005) (electronic)
Efendiev Y., Hou T.: Multiscale finite element methods for porous media flows and their applications. Appl. Numer. Math. 57(5–7), 577–596 (2007)
Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3(1), 168–194 (2004/2005) (electronic)
Thomas Y.H., Wu X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)
Thomas Y.H., Wu X.-H., Cai Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68(227), 913–943 (1999)
Matache, A.-M.: Sparse two-scale FEM for homogenization problems. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 659–669 (2002)
Matache A.-M., Schwab C.: Two-scale FEM for homogenization problems. M2AN Math. Model. Numer. Anal. 36(4), 537–572 (2002)
Ming P., Zhang P.: Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comp. 76(257), 153–177 (2007) (electronic)
Oden J.T., Vemaganti K.S.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys. 164(1), 22–47 (2000)
Ohlberger M.: A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4(1), 88–114 (2005) (electronic)
Oleĭnik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical problems in elasticity and homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland Publishing Co., Amsterdam (1992)
Persson, J.: A non-periodic and two-dimensional example of elliptic homogenization (2009, preprint)
Schwab, C., Matache, A.-M.: Generalized FEM for homogenization problems. In: Multiscale and multiresolution methods. Lect. Notes Comput. Sci. Eng., vol. 20, pp. 197–237. Springer, Berlin (2002)
Szabo B., Babuska I.: Finite Element Analysis, chapter 6.3, pp. 105–112. Wiley, London (1991)
Vemaganti K.S., Oden J.T.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech. Eng. 190(46–47), 6089–6124 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Henning, P., Ohlberger, M. The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. Numer. Math. 113, 601–629 (2009). https://doi.org/10.1007/s00211-009-0244-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-009-0244-4
Mathematics Subject Classification (2000)
- 35J25
- 65N15
- 65N12