Advertisement

Numerische Mathematik

, Volume 113, Issue 2, pp 181–242 | Cite as

Numerical approximation of characteristic values of partial retarded functional differential equations

  • D. Breda
  • S. MasetEmail author
  • R. Vermiglio
Article

Abstract

The stability of an equilibrium point of a dynamical system is determined by the position in the complex plane of the so-called characteristic values of the linearization around the equilibrium. This paper presents an approach for the computation of characteristic values of partial differential equations of evolution involving time delay, which is based on a pseudospectral method coupled with a spectral method. The convergence of the computed characteristic values is of infinite order with respect to the pseudospectral discretization and of finite order with respect to the spectral one. However, for one dimensional reaction diffusion equations, the finite order of the spectral discretization is proved to be so high that the convergence turns out to be as fast as one of infinite order.

Mathematics Subject Classification (2000)

65N25 65N35 34K30 35R10 47D06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breda D.: Solution operator approximation for characteristic roots of delay differential equations. Appl. Numer. Math. 56, 305–317 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Breda, D.: The infinitesimal generator approach for the computation of characteristic roots for delay differential equations using BDF methods. Research Report RR02/17UDMI. Department of Mathematics and Computer Science, University of Udine (2002)Google Scholar
  3. 3.
    Breda D., Maset S., Vermiglio R.: Computing the characteristic roots for delay differential equations . IMA J. Numer. Anal 24(1), 1–19 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Breda D., Maset S., Vermiglio R.: Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput 27(2), 482–495 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Breda, D., Maset, S., Vermiglio, R.: A new algorithm for efficient computation of level curves of surfaces. Research Report RR05/09UDMI, Department of Mathematics and Computer Science, University of Udine (2005)Google Scholar
  6. 6.
    Breda D., Maset S., Vermiglio R.: Pseudospectral approximation of derivative operators with non-local boundary conditions. Appl. Numer. Math 56, 318–331 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chan W.L., Zhu G.B.: On the semigroups of age-size dependent population dynamics with spatial diffusion. Manuscr. Math. 66, 161–181 (1989)zbMATHCrossRefGoogle Scholar
  8. 8.
    Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O.: Delay Equations Functional-, Complex-, and Nonlinear Analysis. AMS Series No. 110. Springer, Berlin (1995)Google Scholar
  9. 9.
    Engelborghs K., Luzyanina T., Roose D.: Computing stability of differential equations with bounded distributed delays. Numer. Algorithms 34(1), 41–66 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Engelborghs K., Roose D.: On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40(2), 629–650 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Engelborghs K., Roose D.: Numerical computation of stability and detection of Hopf bifurcations of steady-state solutions of delay differential equations. Adv. Comput. Math. 10(3-4), 271–289 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators. Operator Theory: Advances and Applications, vol. 49. Birkhauser, Basel (1990)Google Scholar
  13. 13.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff problems. Second revised edition. SCM Series No. 8. Springer, Berlin (1993)Google Scholar
  14. 14.
    Hutchinson G.E.: Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 50, 221–246 (1948)CrossRefGoogle Scholar
  15. 15.
    Kuang Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press, New York (1993)Google Scholar
  16. 16.
    Ledoux V., Van Daele M., Vanden Berghe G.: MATSLISE: a MATLAB package for the numerical solution of Sturm–Liouville and Schrödinger equations. ACM Trans. Math. Softw. 31(4), 532–554 (2005)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lutgen J.: A note on Riesz bases of eigenvectors of certain holomorphic operator-functions. J. Math. Anal. Appl. 255, 358–373 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pryce, J.D.: The Numerical Solution of Sturm–Liouville Problems. Numerical Mathematics and Scientific Computations Series. Oxford University Press, Oxford (1994)Google Scholar
  19. 19.
    Pruess S.: Estimating the eigenvalues of Sturm–Liouville problems by approximating the differential equations. SIAM J. Numer. Anal. 10(1), 55–68 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rudin, W.: Functional Analysis. Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)Google Scholar
  21. 21.
    So J.H.-W., Yu. J.: Global attractivity for a population model with delay. Proc. Am. Math. Soc. 125, 2687–2694 (1995)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Trefethen, L.N.: Spectral methods in MATLAB. Software Environment Tools series, SIAM (2000)Google Scholar
  23. 23.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations. AMS Series No. 119. Springer, Berlin (1996)Google Scholar
  24. 24.
    Zou X.: Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type. J. Comput. Appl. Math. 146, 309–321 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di UdineUdineItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di TriesteTriesteItaly

Personalised recommendations