Skip to main content
Log in

A new a posteriori error estimate for the Morley element

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we present a posteriori error analysis for the nonconforming Morley element of the fourth order elliptic equation. We propose a new residual-based a posteriori error estimator and prove its reliability and efficiency. These results refine those of Beirao da Veiga et al. (Numer Math 106:165–179, 2007) by dropping two edge jump terms in both the energy norm of the error and the estimator, and those of Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) by showing the efficiency in the sense of Verfürth (A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, New York, 1996). Moreover, the normal component in the estimators of Beirao da Veiga et al. (Numer Math 106:165–179, 2007) and Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) is dropped, and therefore only the tangential component of the stress on each edge comes into the estimator. In addition, we generalize these results to three dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker G.: Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31, 45–59 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bazeley, G.P., Cheung, Y.K., Irons, B.M., Zienkiewicz, O.C.: Triangular elements in plate bending conforming and nonconforming solutions. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson A. F. Base, Ohio, pp. 547–576 (1965)

  3. Beirão da Veiga L., Niiranen J., Stenberg R.: A family of C 0 finite element for Kirchhoff plates. SIAM J. Numer. Anal. 45, 2047–2071 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beirão da Veiga L., Niiranen J., Stenberg R.: A family of C 0 finite elements for Kirchhoff plates II: numerical results. Comput. Methods Appl. Mech. Eng. 197, 1850–1864 (2008)

    Article  Google Scholar 

  5. Beirao da Veiga L., Niiranen J., Stenberg R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernardi C., Girault V.: A local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai Z., Douglas J. Jr, Ye X.: A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. CaLcoLo 36, 215–232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carstensen C.: Quasi-interpolation and a posteriori error analysis in finite element methods. Math. Model Numer. Anal. 33, 1187–1202 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carstensen C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carstensen C., Bartels S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: low order conforming, nonconforming, and mixed FEM. Math. Comp. 71, 945–969 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen C., Bartels S., Jansche S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92, 233–256 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carstensen C., Hu J., Orlando A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45, 62–82 (2007)

    Article  MathSciNet  Google Scholar 

  14. Ciarlet P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978); reprinted as SIAM Classics in Applied Mathematics, 2002

  15. Clément P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)

    Google Scholar 

  16. Crouzeix M., Raviart P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7, 33–76 (1973)

    MathSciNet  Google Scholar 

  17. Dari E., Duran R., Padra C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64, 1017–1033 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dari E., Duran R., Padra C., Vampa V.: A posteriori error estimators for nonconforming finite element methods. Math. Model. Numer. Anal. 30, 385–400 (1996)

    MATH  MathSciNet  Google Scholar 

  19. Douglas J. Jr, Santos J.E., Sheen D., Ye X.: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. Math. Model. Numer. Anal. 33, 747–770 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Girault D., Raviart P.A.: Finite element methods for Naviar–Stokes equations. Springer, Berlin (1986)

    Google Scholar 

  21. Han H.D.: Nonconforming elements in the mixed finite element method. J. Comp. Math. 2, 223–233 (1984)

    MATH  Google Scholar 

  22. Hu J., Shi Z.C.: Constrained quadrilateral nonconforming rotated Q 1-element. J. Comp. Math. 23, 561–586 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Lascaux P., Lesaint P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numer. 1, 9–53 (1985)

    Google Scholar 

  24. Lin Q., Tobiska L., Zhou A.H.: On the superconvergence of nonconforming low order finite element methods applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Morley L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Q. 19, 149–169 (1968)

    Google Scholar 

  26. Park C., Sheen D.: P 1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41, 624–640 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pascik J., Zhao J.: Overlapping Schwarz methods in H (curl) on polyhedral domain. J. Numer. Math. 10, 221–234 (2002)

    MathSciNet  Google Scholar 

  28. Rannacher R., Turek S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods PDE 8, 97–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shi Z.C.: On the convergence properties of the quadrilateral elements of Sander and Beckers. Math. Comp. 42, 493–504 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shi Z.C.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44, 349–361 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shi Z.C.: An explicit analysis of Stummel’s patch test examples. Int. J. Numer. Meths. Eng. 20, 1233–1246 (1984)

    Article  MATH  Google Scholar 

  32. Shi Z.C.: The generalized patch test for Zienkiewicz’s triangles. J. Comp. Math. 2, 279–286 (1984)

    MATH  Google Scholar 

  33. Shi Z.C.: On the convergence of nonconforming finite elements. In: Feng, K. (eds) Proc. of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, pp. 78–95. Science Press, Beijing (1984)

    Google Scholar 

  34. Shi Z.C.: Convergence properties of two nonconforming finite elements. Comput. Meths. Appl. Mech. Engrg. 48, 123–137 (1985)

    Article  MATH  Google Scholar 

  35. Shi Z.C.: The F-E-M-Test for nonconforming finite elements. Math. Comp. 49, 391–405 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shi Z.C.: Error estimates for the Morley element. Chin. J. Numer. Math. Appl. 12, 102–108 (1990)

    Google Scholar 

  37. Stummel F.: The generalized test. SIAM J. Numer. Anal. 16, 449–471 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  38. Verfürth R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, New York (1996)

    MATH  Google Scholar 

  39. Wang, M., Zhang, S.: Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13 (2006), School of Mathematical Sciences and Institute of Mathematics, Peking University

  40. Wang M., Zhang S.: A posteriori estimators of nonconforming finite element method for fourth order elliptic perturbation problems. J. Comp. Math. 26, 554–577 (2008)

    Google Scholar 

  41. Wang M., Xu J.C.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wang M., Xu J.C.: Some tetrahedron nonconforming elements for fourth order elliptic equations. Math. Comp. 76, 1–18 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wang M., Shi Z.C., Xu J.C.: Some n-rectangle nonconforming elements for fourth order elliptic equations. J. Comp. Math. 25, 408–420 (2007)

    MATH  MathSciNet  Google Scholar 

  44. Wilson E.L., Taylor R.L., Doherty W., Ghaboussi J.: Incompatible displacement models. In: Fenves, S.J., Perrone, N., Robinson, A.R., Schnobrich, W.C. (eds) Numerical and Computer Methods in Structural Mechanics, pp. 43–57. Academic, New York (1973)

    Google Scholar 

  45. Zhang Z.M.: Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34, 640–663 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Shi, Z. A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009). https://doi.org/10.1007/s00211-008-0205-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0205-3

Mathematics Subject Classification (2000)

Navigation