Abstract
In this paper, we present a posteriori error analysis for the nonconforming Morley element of the fourth order elliptic equation. We propose a new residual-based a posteriori error estimator and prove its reliability and efficiency. These results refine those of Beirao da Veiga et al. (Numer Math 106:165–179, 2007) by dropping two edge jump terms in both the energy norm of the error and the estimator, and those of Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) by showing the efficiency in the sense of Verfürth (A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, New York, 1996). Moreover, the normal component in the estimators of Beirao da Veiga et al. (Numer Math 106:165–179, 2007) and Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) is dropped, and therefore only the tangential component of the stress on each edge comes into the estimator. In addition, we generalize these results to three dimensional case.
Similar content being viewed by others
References
Baker G.: Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31, 45–59 (1977)
Bazeley, G.P., Cheung, Y.K., Irons, B.M., Zienkiewicz, O.C.: Triangular elements in plate bending conforming and nonconforming solutions. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson A. F. Base, Ohio, pp. 547–576 (1965)
Beirão da Veiga L., Niiranen J., Stenberg R.: A family of C 0 finite element for Kirchhoff plates. SIAM J. Numer. Anal. 45, 2047–2071 (2007)
Beirão da Veiga L., Niiranen J., Stenberg R.: A family of C 0 finite elements for Kirchhoff plates II: numerical results. Comput. Methods Appl. Mech. Eng. 197, 1850–1864 (2008)
Beirao da Veiga L., Niiranen J., Stenberg R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007)
Bernardi C., Girault V.: A local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)
Cai Z., Douglas J. Jr, Ye X.: A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. CaLcoLo 36, 215–232 (1999)
Carstensen C.: Quasi-interpolation and a posteriori error analysis in finite element methods. Math. Model Numer. Anal. 33, 1187–1202 (1999)
Carstensen C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)
Carstensen C., Bartels S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: low order conforming, nonconforming, and mixed FEM. Math. Comp. 71, 945–969 (2002)
Carstensen C., Bartels S., Jansche S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92, 233–256 (2002)
Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)
Carstensen C., Hu J., Orlando A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45, 62–82 (2007)
Ciarlet P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978); reprinted as SIAM Classics in Applied Mathematics, 2002
Clément P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)
Crouzeix M., Raviart P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7, 33–76 (1973)
Dari E., Duran R., Padra C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64, 1017–1033 (1995)
Dari E., Duran R., Padra C., Vampa V.: A posteriori error estimators for nonconforming finite element methods. Math. Model. Numer. Anal. 30, 385–400 (1996)
Douglas J. Jr, Santos J.E., Sheen D., Ye X.: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. Math. Model. Numer. Anal. 33, 747–770 (1999)
Girault D., Raviart P.A.: Finite element methods for Naviar–Stokes equations. Springer, Berlin (1986)
Han H.D.: Nonconforming elements in the mixed finite element method. J. Comp. Math. 2, 223–233 (1984)
Hu J., Shi Z.C.: Constrained quadrilateral nonconforming rotated Q 1-element. J. Comp. Math. 23, 561–586 (2005)
Lascaux P., Lesaint P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numer. 1, 9–53 (1985)
Lin Q., Tobiska L., Zhou A.H.: On the superconvergence of nonconforming low order finite element methods applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)
Morley L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Q. 19, 149–169 (1968)
Park C., Sheen D.: P 1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41, 624–640 (2003)
Pascik J., Zhao J.: Overlapping Schwarz methods in H (curl) on polyhedral domain. J. Numer. Math. 10, 221–234 (2002)
Rannacher R., Turek S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods PDE 8, 97–111 (1992)
Shi Z.C.: On the convergence properties of the quadrilateral elements of Sander and Beckers. Math. Comp. 42, 493–504 (1984)
Shi Z.C.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44, 349–361 (1984)
Shi Z.C.: An explicit analysis of Stummel’s patch test examples. Int. J. Numer. Meths. Eng. 20, 1233–1246 (1984)
Shi Z.C.: The generalized patch test for Zienkiewicz’s triangles. J. Comp. Math. 2, 279–286 (1984)
Shi Z.C.: On the convergence of nonconforming finite elements. In: Feng, K. (eds) Proc. of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, pp. 78–95. Science Press, Beijing (1984)
Shi Z.C.: Convergence properties of two nonconforming finite elements. Comput. Meths. Appl. Mech. Engrg. 48, 123–137 (1985)
Shi Z.C.: The F-E-M-Test for nonconforming finite elements. Math. Comp. 49, 391–405 (1987)
Shi Z.C.: Error estimates for the Morley element. Chin. J. Numer. Math. Appl. 12, 102–108 (1990)
Stummel F.: The generalized test. SIAM J. Numer. Anal. 16, 449–471 (1979)
Verfürth R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, New York (1996)
Wang, M., Zhang, S.: Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13 (2006), School of Mathematical Sciences and Institute of Mathematics, Peking University
Wang M., Zhang S.: A posteriori estimators of nonconforming finite element method for fourth order elliptic perturbation problems. J. Comp. Math. 26, 554–577 (2008)
Wang M., Xu J.C.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)
Wang M., Xu J.C.: Some tetrahedron nonconforming elements for fourth order elliptic equations. Math. Comp. 76, 1–18 (2007)
Wang M., Shi Z.C., Xu J.C.: Some n-rectangle nonconforming elements for fourth order elliptic equations. J. Comp. Math. 25, 408–420 (2007)
Wilson E.L., Taylor R.L., Doherty W., Ghaboussi J.: Incompatible displacement models. In: Fenves, S.J., Perrone, N., Robinson, A.R., Schnobrich, W.C. (eds) Numerical and Computer Methods in Structural Mechanics, pp. 43–57. Academic, New York (1973)
Zhang Z.M.: Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34, 640–663 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hu, J., Shi, Z. A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009). https://doi.org/10.1007/s00211-008-0205-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0205-3