Numerische Mathematik

, Volume 111, Issue 4, pp 631–655 | Cite as

Function classes for double exponential integration formulas

  • Ken’ichiro Tanaka
  • Masaaki SugiharaEmail author
  • Kazuo Murota
  • Masatake Mori


The double exponential (DE) formulas for numerical integration are known to be highly efficient, more efficient than the single exponential (SE) formulas in many cases. Function classes suited to the SE formulas have already been investigated in the literature through rigorous mathematical analysis, whereas this is not the case with the DE formulas. This paper identifies function classes suited to the DE formulas in a way compatible with the existing theoretical results for the SE formulas. The DE formulas are good for more restricted classes of functions, but more efficient for such functions. Two concrete examples demonstrate the subtlety in the behavior of the DE formulas that is revealed by our theoretical analysis.

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bornemann F., Laurie D., Wagon S., Waldvogel J.: The SIAM 100-digit challenge. SIAM, Philadelphia (2004)zbMATHGoogle Scholar
  2. 2.
    Davis P.J., Rabinowitz P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)zbMATHGoogle Scholar
  3. 3.
    Iri M., Moriguti S., Takasawa Y.: On a certain quadrature formula. RIMS Kokyuroku Kyoto Univ. 91, 82–119 (1970) (in Japanese)Google Scholar
  4. 4.
    Iri M., Moriguti S., Takasawa Y.: On a certain quadrature formula. J. Comput. Appl. Math. 17, 3–20 (1987) (translation of the original paper [3]zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Mori M., Sugihara M.: The double exponential transformations in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Muhammad M., Mori M.: Double exponential formulas for numerical indefinite integration. J. Comput. Appl. Math. 161, 431–448 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Sag W.T., Szekeres G.: Numerical evaluation of high-dimensional integrals. Math. Comp. 18, 245–253 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Schwartz C.: Numerical integration of analytic functions. J. Comput. Phys. 4, 19–29 (1969)zbMATHCrossRefGoogle Scholar
  9. 9.
    Stenger F.: Integration formulas based on the trapezoidal formula. J. Inst. Math. Appl. 12, 103–114 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Stenger F.: Approximations via Whittaker’s cardinal function. J. Approx. Theory 17, 222–240 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Stenger F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)zbMATHGoogle Scholar
  12. 12.
    Stenger F.: Summary of Sinc numerical methods. J. Comput. Appl. Math. 121, 379–420 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sugihara M.: Optimality of the double exponential formula—functional analysis approach. Numer. Math. 75, 379–395 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Takahasi H., Mori M.: Quadrature formulas obtained by variable transformation. Numer. Math. 21, 206–219 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Takahasi H., Mori M.: Double exponential formulas for numerical integration. Publ. RIMS Kyoto Univ. 9, 721–741 (1974)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ken’ichiro Tanaka
    • 1
  • Masaaki Sugihara
    • 1
    Email author
  • Kazuo Murota
    • 1
  • Masatake Mori
    • 2
  1. 1.Department of Mathematical Informatics, Graduate School of Information Science and TechnologyUniversity of TokyoBunkyo-kuJapan
  2. 2.Department of Mathematical SciencesTokyo Denki UniversityHikiJapan

Personalised recommendations