Advertisement

Numerische Mathematik

, Volume 108, Issue 4, pp 571–603 | Cite as

Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems

  • M. HintermüllerEmail author
  • F. Tröltzsch
  • I. Yousept
Article

Abstract

A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discretizations are proved. The paper ends by a numerical verification of the theoretical results including a study of the algorithm in the case of vanishing Lavrentiev-parameter. The latter process is realized numerically by a combination of a nested iteration concept and an extrapolation technique for the state with respect to the Lavrentiev-parameter.

Mathematics Subject Classification (2000)

35J60 49K20 49M05 65K10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alibert J.-J. and Raymond J.-P. (1998). A Lagrange multiplier theorem for control problems with state constraints. Numer. Funct. Anal. Optim. 19(7–8): 697–704 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allgower E.L., Böhmer K., Potra F.A. and Rheinboldt W.C. (1986). A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23(1): 160–169 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alt W. (2001). Mesh-independence of the Lagrange–Newton method for nonlinear optimal control problems and their discretizations (Optimization with data perturbations, II). Ann. Oper. Res., 101: 101–117 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arada N., Casas E. and Tröltzsch F. (2002). Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23: 201–229 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bergounioux M. and Kunisch K. (2002). Primal–dual active set strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22: 193–224 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Casas E. (1986). Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24: 1309–1318 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Casas E. (1993). Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31: 993–1006 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Casas E. and Tröltzsch F. (1999). Second-order necessary optimality conditions for some state- constrained control problems of semilinear elliptic equations. Appl. Math. Optim. 39(2): 211–227 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Casas E. and Tröltzsch F. (2002). Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31: 695–712 zbMATHGoogle Scholar
  10. 10.
    Casas E., Tröltzsch F. and Unger A. (2000). Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38(5): 1369–1391 (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen X., Nashed Z. and Qi L. (2000). Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4): 1200–1216 (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Deuflhard P. and Potra F.A. (1992). Asymptotic mesh independence of Newton–Galerkin methods via a refined Mysovskiĭ theorem. SIAM J. Numer. Anal. 29(5): 1395–1412 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dontchev A.L., Hager W.W. and Veliov V.M. (2000). Uniform convergence and mesh independence of Newton’s method for discretized variational problems. SIAM J. Control Optim. 39(3): 961–980 (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems, vol. II. Springer Series in Operations Research. Springer, New York (2003)Google Scholar
  15. 15.
    Hackbusch W. (1985). Multigrid methods and applications, vol. 4. Springer Series in Computational Mathematics. Springer, Berlin Google Scholar
  16. 16.
    Hintermüller, M.: Mesh-independence and fast local convergence of a primal–dual active set method for mixed control-state constrained elliptic control problems. ANZIAM J. (2007) (to appear)Google Scholar
  17. 17.
    Hintermüller M., Ito K. and Kunisch K. (2003). The primal–dual active set strategy as a semismooth newton method. SIAM J. Optim. 13: 865–888 zbMATHCrossRefGoogle Scholar
  18. 18.
    Hintermüller M. and Kunisch K. (2006). Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45: 1198–1221 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hintermüller, M., Ring, W.: A level set approach for the solution of a state constrained optimal control problem. Num. Math. (2004)Google Scholar
  20. 20.
    Hintermüller M. and Ulbrich M. (2004). A mesh independence result for semismooth Newton methods. Math. Program. 101: 151–184 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ioffe A.D. (1979). Necessary and sufficient conditions for a local minimum. III. Second order conditions and augmented duality. SIAM J. Control Optim. 17(2): 266–288 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kummer B. (2000). Generalized Newton and NCP methods: convergence, regularity, actions. Discuss. Math. Diff. Incl. 20: 209–244 zbMATHMathSciNetGoogle Scholar
  23. 23.
    Lions, J.-L.: Some aspects of the optimal control of distributed parameter systems. Society for Industrial and Applied Mathematics, Philadelphia. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 6. (1972)Google Scholar
  24. 24.
    Meyer C., Rösch A. and Tröltzsch F. (2006). Optimal control problems of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33: 209–228 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Prüfert, U., Tröltzsch, F., Weiser, M.: The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl. (to appear)Google Scholar
  26. 26.
    Rösch, A., Tröltzsch, F.: Existence of regular Lagrange multipliers for a nonlinear elliptic optimal control problem with pointwise control-state constraints (Submitted)Google Scholar
  27. 27.
    Tröltzsch F. (2005). Optimale Steuerung partieller Differentialgleichungen. Vieweg, Wiesbaden zbMATHGoogle Scholar
  28. 28.
    Tröltzsch F. (2005). Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 15: 616–634 zbMATHCrossRefGoogle Scholar
  29. 29.
    Weiser M., Schiela A. and Deuflhard P. (2005). Asymptotic mesh independence of Newton’s method revisited. SIAM J. Numer. Anal. 42(5): 1830–1845 (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wright S.J. (1997). Primal–dual Interior-Point Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Mathematics and Scientific ComputingUniversity of GrazGrazAustria
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations