Skip to main content
Log in

Adaptive frame methods for nonlinear variational problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we develop adaptive numerical solvers for certain nonlinear variational problems. The discretization of the variational problems is done by a suitable frame decomposition of the solution, i.e., a complete, stable, and redundant expansion. The discretization yields an equivalent nonlinear problem on the space of frame coefficients. The discrete problem is then adaptively solved using approximated nested fixed point and Richardson type iterations. We investigate the convergence, stability, and optimal complexity of the scheme. A theoretical advantage, for example, with respect to adaptive finite element schemes is that convergence and complexity results for the latter are usually hard to prove. The use of frames is further motivated by their redundancy, which, at least numerically, has been shown to improve the conditioning of the discretization matrices. Also frames are usually easier to construct than Riesz bases. We present a construction of divergence-free wavelet frames suitable for applications in fluid dynamics and magnetohydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albukerk C., Urban K., Rempfer D. and Lumley J. (2002). Divergence-free wavelet analysis of turbulent flows. J. Sci. Comput. 1: 49–66

    Article  Google Scholar 

  2. Barinka A., Dahmen W. and Schneider R. (2007). Fast computation of adaptive wavelet expansions. Numer. Math. 105(4): 549–589

    Article  MATH  MathSciNet  Google Scholar 

  3. Binev P. and DeVore R. (2004). Fast computation in adaptive tree approximation. Numer. Math. 97(2): 193–217

    Article  MATH  MathSciNet  Google Scholar 

  4. Binev P., Dahmen W. and DeVore R. (2004). Adaptive finite element methods with convergence rate. Numer. Math. 97: 219–268

    Article  MATH  MathSciNet  Google Scholar 

  5. Charina M., Meir A.J. and Schmidt P.G. (2004). Mixed velocity, stress, current, and potential boundary conditions for stationary MHD flow. Comput. Math. Appl. 48(7–8): 1181–1190

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen A., Dahmen W. and DeVore R. (2001). Adaptive wavelet methods for elliptic operator equations—Convergence rates. Math. Comput. 70: 27–75

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen A., Dahmen W. and DeVore R. (2002). Adaptive wavelet methods II: beyond the elliptic case. Found. Comput. Math. 2(3): 203–245

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen A., Dahmen W. and DeVore R. (2003). Adaptive methods for nonlinear variational problems. SIAM J. Numer. Anal. 41(5): 1785–1823

    Article  MATH  MathSciNet  Google Scholar 

  9. Cohen A., Dahmen W. and DeVore R. (2003). Sparse evaluation of compositions of functions using multiscale expansions. SIAM J. Math. Anal. 35(2): 279–303

    Article  MATH  MathSciNet  Google Scholar 

  10. Dahlke S., Dahmen W., Hochmuth R. and Schneider R. (1997). Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23: 21–48

    Article  MATH  MathSciNet  Google Scholar 

  11. Dahlke S., Fornasier M. and Raasch T. (2007). Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27(1): 27–63

    Article  MATH  MathSciNet  Google Scholar 

  12. Dahlke, S., Fornasier, M., Primbs, M., Raasch, T., Werner, M.: Nonlinear and adaptive frame approximation schemes for elliptic PDEs: theory and numerical experiments. Bericht Nr. 2007-7, Philipps-Universität Marburg (2007)

  13. Dahlke S., Fornasier M., Raasch T., Stevenson R. and Werner M. (2007). Adaptive frame methods for elliptic operator equations: the steepest descent approach. IMA J. Numer. Anal. 27(4): 717–740

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahmen W., Klint T. and Urban K. (1996). On fictitious domain formulations for Maxwell’s equations. Found. Comput. Math. 3: 135–143

    MathSciNet  Google Scholar 

  15. Dahmen W., Kunoth A. and Urban K. (1999). Biorthogonal spline wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6: 132–196

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahmen W. and Schneider R. (1999). Composite wavelet bases for operator equations. Math. Comput. 68: 1533–1567

    Article  MATH  MathSciNet  Google Scholar 

  17. Dahmen W. and Schneider R. (1999). Wavelets on manifolds I. Construction and domain decomposition. SIAM J. Math. Anal. 31: 184–230

    Article  MATH  MathSciNet  Google Scholar 

  18. Dahmen W., Schneider R. and Xu Y. (2000). Nonlinear functionals of wavelet expansions—adaptive reconstruction and fast evaluation. Numer. Math. 86(1): 49–101

    Article  MATH  MathSciNet  Google Scholar 

  19. Dahmen, W., Vorloeper, J., Urban, K.: Adaptive wavelet methods—basic concepts and applications to the Stokes problem. In: Zhou, D.-X. (ed.) Proceedings of the International Conference of Computational Harmonic Analysis, World Scientific, pp.39–80 (2002)

  20. Davis G., Mallat S. and Avellaneda M. (1997). Adaptive greedy approximations. Constr. Approx. 13(1): 57–98

    MATH  MathSciNet  Google Scholar 

  21. DeVore R. (1998). Nonlinear approximation. Acta Numer. 7: 51–150

    Article  MathSciNet  Google Scholar 

  22. Dörfler W. (1996). A convergent adaptive algorithm for Poisson’s equations. SIAM J. Numer. Anal. 33: 1106–1124

    Article  MATH  MathSciNet  Google Scholar 

  23. Fornasier M. and Gröchenig K. (2005). Intrinsic localization of frames. Constr. Approx. 22: 395–415

    Article  MATH  MathSciNet  Google Scholar 

  24. Girault V. and Raviart P.-A. (1986). Finite Element Approximation of the Navier–Stokes equations, Theory and Algorithms. Springer, New York

    Google Scholar 

  25. Gribonval R. and Vandergheynst P. (2006). On the exponential convergence of matching pursuits in quasi-coherent dictionaries. IEEE Trans. Inform. Theory 52(1): 255–262

    Article  MathSciNet  Google Scholar 

  26. Gröchenig K. (2000). Foundations of Time–Frequency Analysis. Birkhäuser, Basel

    Google Scholar 

  27. Hackbusch W. (1992). Elliptic Differential Equations. Springer, Heidelberg

    MATH  Google Scholar 

  28. Kato T., Mitrea M., Ponce G. and Taylor M. (2000). Extension and representation of divergence-free vector fields on bounded domains. Math. Res. Lett. 7: 643–650

    MATH  MathSciNet  Google Scholar 

  29. Mallat S. and Zhang Z. (1993). Matching pursuits with time–frequency dictionaries. IEEE Trans. Signal Process. 41(12): 3397–3415

    Article  MATH  Google Scholar 

  30. Meir A.J. and Schmidt P.G. (1999). Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36: 1304–1332

    Article  MATH  MathSciNet  Google Scholar 

  31. Mitrea, D.: On the extension of divergence-free vector fields across Lipschitz interfaces. In: Proceedings of the Integral Methods for Science and Engineering Conference (2006)

  32. Morin P., Nochetto R.H. and Siebert K.G. (2002). Convergence of adaptive finite element methods. SIAM Rev. 44: 631–658

    Article  MATH  MathSciNet  Google Scholar 

  33. Oswald, P.: Frames and space splittings in Hilbert spaces. Survey lectures on multilevel schemes for elliptic problems in Sobolev spaces, http://www.faculty.iu-bremen.de/poswald/bonn1.pdf (1997)

  34. Oswald, P.: Multilevel frames and Riesz bases in Sobolev spaces. Survey lectures on multilevel schemes for elliptic problems in Sobolev spaces, http://www.faculty.iu-bremen.de/poswald/bonn2.pdf (1997)

  35. Stevenson R. (2003). Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3): 1074–1100

    Article  MATH  MathSciNet  Google Scholar 

  36. Stevenson R. (2005). An optimal adaptive finite element method. SIAM J. Numer. Anal. 42(5): 2188–2217

    Article  MATH  MathSciNet  Google Scholar 

  37. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math., doi:10.1007/s10208-005-0183-0 (2006)

    Google Scholar 

  38. Temlyakov V.N. (2000). Weak greedy algorithms. Adv. Comput. Math. 12(2–3): 213–227

    Article  MATH  MathSciNet  Google Scholar 

  39. Tropp J.A. (2004). Greedy is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50(10): 2231–2242

    Article  MathSciNet  Google Scholar 

  40. Urban, K.: Using divergence free wavelets for the numerical solution of the Stokes problem. In: Axelsson, O., Polman, B. (eds.) Algebraic Multilevel Iterations. Nijmegen, pp. 259–278 (1986)

  41. Urban K. (1995). On divergence-free wavelets. Adv. Comput. Math. 4: 51–82

    Article  MATH  MathSciNet  Google Scholar 

  42. Urban K. (2002). Wavelets in Numerical Simulation: Problem Adapted Construction and Applications. Springer, Heidelberg

    MATH  Google Scholar 

  43. Verfürth R. (1994). A posteriori error estimation and adaptive mesh-refinement techniques. J. Comp. Appl. Math. 50: 67–83

    Article  MATH  Google Scholar 

  44. Werner, M.: Adaptive Frame-Verfahren für elliptische Randwertprobleme. Master thesis, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Fornasier.

Additional information

M. Fornasier acknowledges the financial support provided through the Intra-European Individual Marie Curie Fellowship Programme, under contract MOIF-CT-2006-039438. All of the authors acknowledge the hospitality of Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma “La Sapienza”, Italy, during the early preparation of this work. The authors want to thank Daniele Boffi, Dorina Mitrea, and Karsten Urban for the helpful and fruitful discussions on divergence-free function spaces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charina, M., Conti, C. & Fornasier, M. Adaptive frame methods for nonlinear variational problems. Numer. Math. 109, 45–75 (2008). https://doi.org/10.1007/s00211-007-0127-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0127-5

Mathematics Subject Classification (2000)

Navigation