Skip to main content
Log in

Perturbation bounds for polynomials

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Using two different elementary approaches we derive a global and a local perturbation theorem on polynomial zeros that significantly improve the results of Ostrowski (Acta Math 72:99–257, 1940), Elsner et al. (Linear Algebra Appl 142:195–209, 1990). A comparison of different perturbation bounds shows that our results are better in many cases than the similar local result of Beauzamy (Can Math Bull 42(1):3–12, 1999). Using the matrix theoretical approach we also improve the backward stability result of Edelman and Murakami (Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, SIAM, Philapdelphia, 1994; Math Comput 64:210–763, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J. (1996). A secular equation for the eigenvalues of a diagonal matrix perturbation. Linear Algebra Appl. 246: 49–70

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold V.I. (1971). On the matrices depending on parameters. Russ. Math. Surv. 26: 29–43

    Article  Google Scholar 

  3. Baumgartel H. (1985). Analytic Perturbation Theory for Matrices and Operators. Birkhauser Verlag, Budapest

    Google Scholar 

  4. Bauer F.L. and Fike C.T. (1960). Norms and exclusion theorems. Numer. Math. 2: 137–144

    Article  MATH  MathSciNet  Google Scholar 

  5. Beauzamy B. (1999). How the roots of a polynomial vary with its coefficients: a local quantitative result. Can. Math. Bull. 42(1): 3–12

    MATH  MathSciNet  Google Scholar 

  6. Beauzamy B. (2000). Finding the roots of polynomial equations: an algorithm with linear command. Revista Matemática Complutense 13(2): 305–323

    MATH  MathSciNet  Google Scholar 

  7. Beckermann B. (2000). The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numer. Math. 85: 553–577

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhatia R., Elsner L. and Krause G. (1990). Bounds for the variation of the roots of a polynomial and the eigenvalues of a matrix. Linear Algebra Appl. 142: 195–209

    Article  MATH  MathSciNet  Google Scholar 

  9. Bhatia R. (1997). Matrix Analysis. Springer, Heidelberg

    Google Scholar 

  10. Björck A. and Pereyra V. (1970). Solution of Vandermonde systems of equations. Math. Comp. 24: 893–903

    Article  MathSciNet  Google Scholar 

  11. Bunch J.R., Nielsen C.P. and Sorensen D.C. (1978). Rank-one modification of the symmetric eigenproblem. Numer. Math. 31: 31–48

    Article  MATH  MathSciNet  Google Scholar 

  12. Chatelin F. (1993). Eigenvalues of Matrices. Wiley, New York

    MATH  Google Scholar 

  13. Chu E.K. (1986). Generalization of the Bauer-Fike Theorem. Numer. Math. 49: 685–691

    Article  MATH  MathSciNet  Google Scholar 

  14. Córdova A., Gautschi W. and Ruschewey S. (1990). Vandermonde matrices on the circle: spectral properties and conditioning. Numer. Math. 57: 577–591

    Article  MathSciNet  Google Scholar 

  15. Csáki, F.G.: Some notes on the inverse of the confluent Vandermonde matrices. IEEE Trans. Autom. Control, February, pp. 154–157 (1975)

  16. Ćurgus B. and Mascioni V. (2006). Roots and polynomials as homeomorphic spaces. Expos. Math. 24: 81–95

    Article  Google Scholar 

  17. Deif A.S. (1995). Rigorous perturbation bounds for eigenvalues and eigenvectors of a matrix. J. Comp. Appl. Math. 57: 403–412

    Article  MATH  MathSciNet  Google Scholar 

  18. Demmel J.W. (1987). On condition numbers and the distance to the nearest ill-posed problem. Numer. Math. 51: 251–289

    Article  MATH  MathSciNet  Google Scholar 

  19. Edelman A. and Murakami H. (1994). Polynomial roots from companion matrix eigenvalues. In: Lewis, J.G. (eds) Proceedings of the Fifth SIAM Conference on Applied Linear Algebra., pp 326–330. SIAM, Philapdelphia

    Google Scholar 

  20. Edelman A. and Murakami H. (1995). Polynomial roots from companion matrix eigenvalues. Math. Comput. 64(210): 763–776

    Article  MATH  MathSciNet  Google Scholar 

  21. Freedman D.Z. (2004). Perturbation bounds for the joint spectrum of commuting matrices. Linear Algebra Appl. 387: 29–40

    Article  MATH  MathSciNet  Google Scholar 

  22. Gautschi W. (1962). On inverses of Vandermonde and confluent Vandermonde matrices. Numer. Math. 4: 117–123

    Article  MATH  MathSciNet  Google Scholar 

  23. Gautschi W. (1963). On inverses of Vandermonde and confluent Vandermonde matrices II. Numer. Math. 5: 425–430

    Article  MATH  MathSciNet  Google Scholar 

  24. Gautschi W. (1973). On the condition of algebraic equations. Numer. Math. 21: 405–424

    Article  MATH  MathSciNet  Google Scholar 

  25. Gautschi W. (1975). Norm estimates for inverses of Vandermonde matrices. Numer. Math. 23: 337–347

    Article  MATH  MathSciNet  Google Scholar 

  26. Gautschi W. (1975). Optimally conditioned Vandermonde matrices. Numer. Math. 24: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  27. Gautschi W. (1978). On inverses of Vandermonde and confluent Vandermonde matrices III. Numer. Math. 29: 445–450

    Article  MATH  MathSciNet  Google Scholar 

  28. Gautschi W. (1979). The condition of polynomial in power form. Math. Comput. 33: 343–352

    Article  MATH  MathSciNet  Google Scholar 

  29. Gautschi W. and Inglese G. (1988). Lower bounds for the condition number of Vandermonde matrices. Numer. Math. 52: 241–250

    Article  MATH  MathSciNet  Google Scholar 

  30. Gilbert R.C. (1988). Companion matrices with integer entries and integer eigenvalues and eigenvectors. Am. Math. Monthly 95: 947–950

    Article  MATH  Google Scholar 

  31. Golub G.H. (1973). Some modified matrix eigenvalue problem. SIAM Rev. 15: 318–334

    Article  MATH  MathSciNet  Google Scholar 

  32. Golub G. and Van Loan C. (1983). Matrix Computations. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  33. Harville D. (1997). Matrix Algebra from a Statistician’s Perspective. Springer, Heidelberg

    MATH  Google Scholar 

  34. Henrici P. (1962). Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numer. Math. 4: 24–40

    Article  MATH  MathSciNet  Google Scholar 

  35. Higham N.J. (1996). Accuracy and Stability of Numerical Algorithms. SIAM, Philapdelphia

    MATH  Google Scholar 

  36. Hoffman A.J. and Wielandt H.W. (1953). The variation of the spectrum of a normal matrix. Duke Math. J. 20: 37–39

    Article  MATH  MathSciNet  Google Scholar 

  37. Horn R. and Johnson C. (1985). Matrix Analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  38. Jiang E. (1998). Challenging eigenvalue perturbation problems. Linear Algebra Appl. 278: 303–307

    Article  MATH  MathSciNet  Google Scholar 

  39. Kato T. (1966). Perturbation Theory for Linear Operators. Springer, Heidelberg

    MATH  Google Scholar 

  40. Kittaneh F. (1995). Singular values of companion matrices and bounds on zeros of polynomials. SIAM J. Matrix Anal. Appl. 16: 333–340

    Article  MATH  MathSciNet  Google Scholar 

  41. Laguerre E.N. (1881). Sur les équations algébriques de la forme \({\frac{A_{0}}{x-a_{0}} + \frac{A_{1}}{x-a_{1}} + \cdots + \frac{A_{n}} {x-a_{n}} = 0}\). Comptes rendus des séances de l”Académie des Sciences 93: 156–157

    Google Scholar 

  42. Li, R.-C.: Lower bounds for the condition number of a real confluent Vandermonde matrix. Technical Report 2004–10, Department of Mathematics, University of Kentucky, available at http://www.ms.uky.edu/~math/MAreport/PDF/2004-10.pdf (2004)

  43. Macon N. and Spitzbart A. (1958). Inverse of Vandermonde matrices. Am. Math. Monthly 65: 95–100

    Article  MATH  MathSciNet  Google Scholar 

  44. Marden M. (1949). The Geometry of the Zeros of a Polynomial in a Complex Variable. AMS, New York

    MATH  Google Scholar 

  45. Melman A. (1995). Numerical solution of a secular equation. Numer. Math. 69: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  46. Mitrinović D.S. (1970). Analytic Inequalities. Springer, Heidelberg

    Google Scholar 

  47. Ostrowski A. (1940). Recherches sur la méthode de Gräffe et les zeros des polynômes et des series de Laurent. Acta Math. 72: 99–257

    Article  MathSciNet  Google Scholar 

  48. Ostrowski A. (1957). Über die Stetigkeit von charakteristischen Wurzeln in Abhängigkeit von den Matrizenelementen. Jahresber. deut. Mat.-Ver. 60: 40–42

    MATH  MathSciNet  Google Scholar 

  49. Ostrowski A. (1960). Solution of Equations and Systems of Equations. Academic, New York

    MATH  Google Scholar 

  50. Pap M. and Schipp F. (2004). Interpolation by rational functions. Ann. Univ. Sci. Bp. Sect. Comp. 24: 223–237

    MATH  MathSciNet  Google Scholar 

  51. Parlett B. (1967). Canonical decomposition of Hessenberg matrices. Math. Comput. 21(98): 223–227

    Article  MATH  MathSciNet  Google Scholar 

  52. Pellet M.A. (1881). Sur une mode de séparation des racines des équations et la formule de Lagrange. Bull. Sci. Math. 5: 393–395

    Google Scholar 

  53. Reichel L. and Opfer G. (1990). Chebyshev-Vandermonde systems. Math. Comp. 57: 703–721

    Article  MathSciNet  Google Scholar 

  54. Robbins H. (1955). A remark on Stirling formula. Am. Math. Monthly 62: 26–29

    Article  MATH  MathSciNet  Google Scholar 

  55. Roberts L.G. (1972). Higher derivations and the Jordan canonical form of the companion matrix. Can. Math. Bull. 15(1): 143–144

    MATH  Google Scholar 

  56. Rump M.S. (2003). Ten methods to bound multiple roots of polynomials. J. Comput. Appl. Math. 156: 403–432

    Article  MATH  MathSciNet  Google Scholar 

  57. Schappelle, R.H.: The inverse of the confluent Vandermonde matrix. IEEE Trans. Autom. Control, October, pp. 724–725 (1972)

  58. Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Technical report, Mathematisches Institut der Universität Tübingen, August, 1982, revised in July, 2004

  59. Smith B.T. (1970). Error bounds for zeros of a polynomial based upon Gerschgorin’s theorem. JACM 17(4): 661–674

    Article  MATH  Google Scholar 

  60. Song Y. (2002). A note on the variation of the spectrum of an arbitrary matrix. Linear Algebra Appl. 342: 41–46

    Article  MATH  MathSciNet  Google Scholar 

  61. Stewart G. and Sun J. (1990). Matrix Perturbation Theory. Academic, New York

    MATH  Google Scholar 

  62. Sun J. (1996). On the variation of the spectrum of a normal matrix. Linear Algebra Appl. 246: 215–223

    Article  MATH  MathSciNet  Google Scholar 

  63. Toh K. and Trefethen L.N. (1994). Pseudozeros of polynomials and pseudospectra of companion matrices. Numer. Math. 68: 403–425

    Article  MATH  MathSciNet  Google Scholar 

  64. Turnbull H.W. and Aitken A.C. (1952). An Introduction to the Theory of Canonical Matrices. Blackie, Glasgow

    Google Scholar 

  65. Tyrtyshnikov E.E. (1994). How bad are Hankel matrices?. Numer. Math. 67: 261–269

    Article  MATH  MathSciNet  Google Scholar 

  66. Verde-Star L. (1988). Inverses of generalized Vandermonde matrices. J. Math. Anal. Appl. 131: 341–353

    Article  MATH  MathSciNet  Google Scholar 

  67. Wilf H.S. (1960). Almost diagonal matrices. Am. Math. Monthly 67: 431–434

    Article  MATH  MathSciNet  Google Scholar 

  68. Wilkinson J.H. (1965). The Algebraic Eigenvalue Problem. Oxford University Press, Oxford

    MATH  Google Scholar 

  69. Wilkinson J.H (1994). Rounding Errors in Algebraic Processes. Dover, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galántai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galántai, A., Hegedűs, C.J. Perturbation bounds for polynomials. Numer. Math. 109, 77–100 (2008). https://doi.org/10.1007/s00211-007-0124-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0124-8

Mathematics Subject Classification (2000)

Navigation