Skip to main content
Log in

Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

An adaptive semi-Lagrangian scheme for solving the Cauchy problem associated to the periodic 1+1-dimensional Vlasov-Poisson system in the two- dimensional phase space is proposed and analyzed. A key feature of our method is the accurate evolution of the adaptive mesh from one time step to the next one, based on a rigorous analysis of the local regularity and how it gets transported by the numerical flow. The accuracy of the scheme is monitored by a prescribed tolerance parameter ε which represents the local interpolation error at each time step, in the L metric. The numerical solutions are proved to converge in L towards the exact ones as ε and Δt tend to zero provided the initial data is Lipschitz and has a finite total curvature, or in other words, that it belongs to \({W^{1,\infty} \cap W^{2,1}}\) . The rate of convergence is \({\mathcal{O}({\Delta}t^2 + \varepsilon/{\Delta}t)}\) , which should be compared to the results of Besse who recently established in (SIAM J Numer Anal 42(1):350–382, 2004) similar rates for a uniform semi-Lagrangian scheme, but requiring that the initial data are in \({{\mathcal C}^2}\) . Several numerical tests illustrate the effectiveness of our approach for generating the optimal adaptive discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arsen’ev, A.: Global existence of a weak solution of Vlasov’s system of equations. U.S.S.R. Comput. Math. Math. Phys. 15(1), 131–143 (1975)

    Article  Google Scholar 

  2. Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118 (1985)

    MATH  MathSciNet  Google Scholar 

  3. Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Differ. Equ. 25(3), 342–364 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  MATH  Google Scholar 

  5. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Besse, N.: Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM J. Numer. Anal. 42(1), 350–382 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  7. Besse, N., Filbet, F., Gutnic, M., Paun, I., Sonnendrücker, E.: An adaptive numerical method for the Vlasov equation based on a multiresolution analysis. In: Brezzi, F., Buffa, A., Escorsaro, S., Murli, A.(eds) Numerical Mathematics and Advanced Applications ENUMATH 2001, pp. 437–446. Springer, Heidelberg (2001)

    Google Scholar 

  8. Besse, N., Mehrenberger, M.: Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comput. 77, 93–123 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Besse, N., Sonnendrücker, E.: Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys. 191(2), 341–376 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. McGraw-Hill, New York (1985)

    Google Scholar 

  12. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    MathSciNet  Google Scholar 

  13. Campos Pinto, M.: Développement et analyse de schémas adaptatifs pour les équations de transport. U. P. et M. Curie, Paris, 2005. PhD Thesis (in french)

  14. Campos Pinto, M.: A total curvature diminishing property for P 1 finite element interpolation. Math. Forschungs. Oberwolfach Report, 34/2004, 2005

  15. Campos Pinto, M., Mehrenberger, M.: Adaptive numerical resolution of the Vlasov equation. Numerical methods for hyperbolic and kinetic problems, CEMRACS 2003/IRMA Lectures in Math. and Theoretical Physics, 2005

  16. Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)

    Article  Google Scholar 

  17. Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23(3), 805–823 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, vol. II, pp. 17–351. North-Holland, Amsterdam (1991)

  19. Cohen, A.: Numerical analysis of wavelet methods, volume 32 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (2003)

  20. Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241), 183–225 (2003) (electronic)

    Article  MATH  Google Scholar 

  21. Cooper, J., Klimas, A.: Boundary value problems for the Vlasov-Maxwell equation in one dimension. J. Math. Anal. Appl. 75(2), 306–329 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dahmen, W.: Adaptive approximation by multivariate smooth splines. J. Approx. Theory 36(2), 119–140 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  24. Dahmen, W., Gottschlich-Müller, B., Müller, S.: Multiresolution schemes for conservation laws. Numer. Math. 88(3), 399–443 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dahmen, W., Müller, S., Schlinkmann, T.: On an adaptive multigrid solver for convection-dominated problems. SIAM J. Sci. Comput. 23(3), 781–804 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  26. DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    MathSciNet  Google Scholar 

  27. Filbet, F., Sonnendrücker, E.: Numerical methods for the Vlasov equation. In: Brezzi, F., Buffa, A., Escorsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2001. Springer, Heidelberg, 2001

  28. Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Comm. 150(3), 247–266 (2003)

    Article  MathSciNet  Google Scholar 

  29. Glassey, R.T.: The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

  30. Griebel, M., Oswald, P.: Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math 4, 171–206 (1999)

    Article  MathSciNet  Google Scholar 

  31. Gutnic, M., Haefele, M., Paun, I., Sonnendrücker, E.: Vlasov simulations on an adaptive phase-space grid. Comput. Phys. Commun. 164, 214–219 (2004)

    Article  Google Scholar 

  32. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115(2), 319–338 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation I. General theory. Math. Methods Appl. Sci. 3(2), 229–248 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  35. Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation II. Special cases. Math. Methods Appl. Sci. 4(1), 19–32 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Houston, P., Süli, E.: Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Technical Report NA-95/24, Oxford University Computing Lab., 1995. Published in Math. Comp. 70(233), 77–106 (2001)

    MATH  Google Scholar 

  37. Iordanskii, S.V.: The Cauchy problem for the kinetic equation of plasma. Am. Math. Soc. Transl. Ser. 2(35), 351–363 (1964)

    Google Scholar 

  38. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105(2), 415–430 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris (1967)

  40. Rault, A., Chiavassa, G., Donat, R.: Shock-vortex interactions at high Mach numbers. J. Sci. Comput. 19(1-3), 347–371 (2003) Special issue in honor of the sixtieth birthday of Stanley Osher

    Google Scholar 

  41. Raviart, P.-A.: An analysis of particle methods. In: Numerical methods in fluid dynamics (Como, 1983), volume 1127 of Lecture Notes in Math., pp. 243–324. Springer, Berlin, 1985

  42. Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188(2), 493–523 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Differ. Equ. 16(8–9), 1313–1335 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sonnendrücker, E., Filbet, F., Friedman, A., Oudet, E., Vay, J.L.: Vlasov simulation of beams with a moving grid. Comput. Phys. Commun. 164, 390–395 (2004)

    Article  Google Scholar 

  45. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yserentant, H.: Hierarchical bases. In: ICIAM 91 (Washington, DC, 1991), pp. 256–276. SIAM, Philadelphia (1992)

  47. Zenger, C.: Sparse grids. In Parallel algorithms for partial differential equations (Kiel, 1990), volume 31 of Notes Numer. Fluid Mech., pp. 241–251. Vieweg, Braunschweig (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Campos Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos Pinto, M., Mehrenberger, M. Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system. Numer. Math. 108, 407–444 (2008). https://doi.org/10.1007/s00211-007-0120-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0120-z

Mathematical Subject Classification (2000)

Navigation