Skip to main content
Log in

Stability and accuracy of adapted finite element methods for singularly perturbed problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The stability and accuracy of a standard finite element method (FEM) and a new streamline diffusion finite element method (SDFEM) are studied in this paper for a one dimensional singularly perturbed connvection-diffusion problem discretized on arbitrary grids. Both schemes are proven to produce stable and accurate approximations provided that the underlying grid is properly adapted to capture the singularity (often in the form of boundary layers) of the solution. Surprisingly the accuracy of the standard FEM is shown to depend crucially on the uniformity of the grid away from the singularity. In other words, the accuracy of the adapted approximation is very sensitive to the perturbation of grid points in the region where the solution is smooth but, in contrast, it is robust with respect to perturbation of properly adapted grid inside the boundary layer. Motivated by this discovery, a new SDFEM is developed based on a special choice of the stabilization bubble function. The new method is shown to have an optimal maximum norm stability and approximation property in the sense that \(\|u-u_{N}\|_{\infty}\leq C\inf_{v_{N}\in V^{N}}\|u-v_{N}\|_{\infty},\) where u N is the SDFEM approximation in linear finite element space V N of the exact solution u. Finally several optimal convergence results for the standard FEM and the new SDFEM are obtained and an open question about the optimal choice of the monitor function for the moving grid method is answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhalov N.S. (1969). Towards optimization of methods for solving boundary value problems in the presence of boundary layers (in Russian). Zh. Vychisl. Mater. Mater. Fiz. 9: 841–859

    Google Scholar 

  2. Borouchaki, H., Castro-Diaz, M.J., George, P.L., Hecht, F., Mohammadi, B.: Anisotropic adaptive mesh generation in two dimensions for CFD. In: 5th International Conference On Numerical Grid Generation in Computational Field Simulations, vol.3, pp.197–206. Mississppi State University (1996)

  3. Brezzi F., Hughes T.J.R., Marini L.D., Russo A. and Süli E. (1999). A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 36(4): 1933–1948

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezzi F., Marini D. and Süli E. (2000). Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math. 85: 31–47

    Article  MATH  MathSciNet  Google Scholar 

  5. Brezzi F. and Russo A. (1994). Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4: 571–587

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao W., Huang W. and Russell R.D. (1999). A study of monitor functions for two dimensional adaptive mesh generation. SIAM J. Sci. Comput. 20: 1978–1994

    Article  MATH  MathSciNet  Google Scholar 

  7. Carey G.F. and Dinh H.T. (1985). Grading functions and mesh redistribution. SIAM J. Numer. Anal. 22(5): 1028–1040

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, L.: Mesh smoothing schemes based on optimal Delaunay triangulations. In: 13th International Meshing Roundtable, pp.109–120. Sandia National Laboratories, Williamsburg (2004)

  9. Chen L. (2005). New analysis of the sphere covering problems and optimal polytope approximation of convex bodies. J. Approx. Theory 133(1): 134–145

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, L., Sun, P., Xu, J.: Multilevel homotopic adaptive finite element methods for convection dominated problems. In: The Proceedings for 15th Conferences for Domain Decomposition Methods. Lecture Notes in Computational Science and Engineering 40, pp.459–468. Springer, Heidelberg (2004)

  11. Chen L., Sun P. and Xu J. (2007). Optimal anisotropic simplicial meshes for minimizing interpolation errors in L p-norm. Math. Comput. 76: 179–204

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen L. and Xu J. (2004). Optimal Delaunay triangulations. J. Comput. Math. 22(2): 299–308

    MATH  MathSciNet  Google Scholar 

  13. Chen, L., Xu, J.: An optimal streamline diffusion finite element method for a singularly perturbed problem. In: AMS Contemporary Mathematics Series: Recent Advances in Adaptive Computation, vol.383, pp.236–246, Hangzhou (2005)

  14. Chen, Y.: Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. In: Proceedings of the 6th japan-china joint seminar on numerical mathematics (tsukuba, 2002). J. Comput. Appl. Math. 159(1), 25–34 (2003)

  15. Chen Y. (2006). Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid. Adv. Comput. Math. 24: 197–212

    Article  MATH  MathSciNet  Google Scholar 

  16. D’Azevedo E.F. and Simpson R.B. (1989). On optimal interpolation triangle incidences. SIAM J. Sci. Statist. Comput. 6: 1063–1075

    MathSciNet  Google Scholar 

  17. de Boor C. (1973). Good approximation by splines with variable knots. Int. Seines Numer. Math, Birkhauser Verlag, Basel 21: 57–72

    Google Scholar 

  18. Boor C. de(1974). Good approximation by splines with variables knots II. In: Watson, G.A. (eds) Proceedings of the Eleventh International Conference on Numerical Methods in Fluid Dynamics, vol. 363., pp 12–20. Springer, Dundee

    Google Scholar 

  19. Devore R.A. and Lorentz G.G. (1993). Constructive Approximation. Springer, New York

    MATH  Google Scholar 

  20. Dolejšì V. and Felcman J. (2004). Anisotropic mesh adaptation for numerical solution of boundary value problems. Numer. Methods Partial Differ. Equ. 20: 576–608

    Article  Google Scholar 

  21. Farrell P.A., Hegarty A.F., Miller J.J.H., O’Riordan E. and Shishkin G.I. (2004). Singularly perturbed convection-diffusion problems with boundary and weak interior layers. J. Comput. Appl. Math. 166: 131–151

    Article  MathSciNet  Google Scholar 

  22. Franca L.P. and Russo A. (1996). Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles. Appl. Math. Lett. 9: 83–88

    Article  MATH  MathSciNet  Google Scholar 

  23. Habashi, W.G., Fortin, M., Dompierre, J., Vallet, M.G., Ait-Ali-Yahia, D., Bourgault, Y., Robichaud, M.P., Tam, A., Boivin, S.: Anisotropic mesh optimization for structured and unstructured meshes. In: 28th Computational Fluid Dynamics Lecture Series. von Karman Institute (1997)

  24. Huang W. (2001). Practical aspects of formulation and solution of moving mesh partial differential equations. J. Comput. Phys. 171: 753–775

    Article  MATH  MathSciNet  Google Scholar 

  25. Huang W. (2001). Variational mesh adaptation: isotropy and equidistribution. J. Comput. Phys. 174: 903–924

    Article  MATH  MathSciNet  Google Scholar 

  26. Huang W. and Sun W. (2003). Variational mesh adaptation. II: Error estimates and monitor functions. J. Comput. Phys. 184: 619–648

    Article  MATH  MathSciNet  Google Scholar 

  27. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng, pp.127, no. 1–4, 387–401 (1995)

  28. Hughes T.J.R. and Brooks A. (1979). A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (eds) Finite Element Methods for Convection Dominated Flows, AMD, vol. 34, pp 19–35. ASME, New York

    Google Scholar 

  29. Hughes T.J.R., Feijoo G., Mazzei L. and Quincy J.B. (1998). The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166: 3–24

    Article  MATH  MathSciNet  Google Scholar 

  30. Johnson C. and Nvert U. (1981). An analysis of some finite element methods for advection-diffusion problems. In: Axelsson, O., Frank, L.S. and Vander Sluis, A. (eds) Analytical and Numerical Approaches to Asymptotic Problems in Analysis., pp 99–116. Amsterdam, NorthHolland

    Google Scholar 

  31. Johnson C., Schatz A.H. and Wahlbin L.B. (1987). Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comput. 49: 25–38

    Article  MATH  MathSciNet  Google Scholar 

  32. Kellogg R.B. and Tsan A. (1978). Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32: 1025–1039

    Article  MATH  MathSciNet  Google Scholar 

  33. Kopteva N.V. (1999). Uniform convergence with respect to a small parameter of a scheme with central difference on refining grids. Comput. Math. Math. Phys. 39(10): 1594–1610

    MATH  MathSciNet  Google Scholar 

  34. Kopteva N.V. (2001). Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(2): 423–441

    Article  MATH  MathSciNet  Google Scholar 

  35. Kopteva N.V. and Stynes M. (2001). A robust adaptive method for quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39: 1446–1467

    Article  MATH  MathSciNet  Google Scholar 

  36. Lenferink W. (2000). Pointwise convergence of approximations to a convection-diffusion equation on a Shishkin mesh. Appl. Numer. Math. 32(1): 69–86

    Article  MATH  MathSciNet  Google Scholar 

  37. Linß T. (2001). Sufficient conditions for uniform convergence on layer-adapted grids. Appl. Numer. Math. 37: 241–255

    Article  MATH  MathSciNet  Google Scholar 

  38. Linß T. (2003). Layer-adapted meshes for convectioni-diffusion problems. Comput. Methods Appl. Mech. Eng. 192: 1061–1105

    Article  MATH  Google Scholar 

  39. Linß T. and Stynes M. (2001). The SDFEM on Shishkin meshes for linear convection-diffusion problems. Numer. Math. 87: 457–484

    Article  MATH  MathSciNet  Google Scholar 

  40. Miller J.J.H., O’Riordan E. and Shishkin G.I. (1995). On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA J. Numer. Anal. 15(1): 89–99

    Article  MATH  MathSciNet  Google Scholar 

  41. Miller J.J.H., O’Riordan E. and Shishkin G.I. (1996). Fitted Numerical Methods For Singular Perturbation Problems. World Scientific, Singapore

    MATH  Google Scholar 

  42. Morton K.W. (1996). Numerical Solution of Convection-Diffusion Problems, volume 12 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London

    Google Scholar 

  43. Nadler E. (1986). Piecewise linear best L 2 approximation on triangulations. In: Chui, C.K., Schumaker, L.L. and Ward, J.D. (eds) Approximation Theory, vol. V, pp 499–502. Academic, New York

    Google Scholar 

  44. Niijima K. (1990). Pointwise error estimates for a streamline diffusion finite element scheme. Numer. Math. 56: 707–719

    Article  MATH  MathSciNet  Google Scholar 

  45. Qiu Y., Sloan D.M. and Tang T. (2000). Convergence analysis of an adaptive finite difference method for a singular perturbation problem. J. Comput. Appl. Math. 116: 121–143

    Article  MATH  MathSciNet  Google Scholar 

  46. Roos H.G. (1998). Layer-adapted grids for singular perturbation problems. ZAMM, Z. Angew. Math. Mech. 78(5): 291–309

    Article  MATH  MathSciNet  Google Scholar 

  47. Roos H.G., Stynes M. and Tobiska L. (1996). Numerical Methods for Singularly Perturbed Differential Equations, volume 24 of Springer series in Computational Mathematics. Springer, Heidelberg

    Google Scholar 

  48. Roos H.G. and Zarin H. (2003). The streamline-diffusion method for a convection-diffusion problem with a point source. J. Comput. Appl. Math. 150: 109–128

    Article  MATH  MathSciNet  Google Scholar 

  49. Sangalli G. (2003). Quasi optimality of the supg method for the one-dimensional adavection-diffusion problem. SIAM J. Numer. Anal. 41(4): 1528–1542

    Article  MATH  MathSciNet  Google Scholar 

  50. Schatz A.H. and Wahlbin L.B. (1982). On the quasi-optimality in L of the \(\overset{\circ}{H^1}\) -projection into finite element spacesMath. Comput. 38(157): 1–22

    Article  MATH  MathSciNet  Google Scholar 

  51. Schatz A.H. and Wahlbin L.B. (1983). On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions. Math. Comput. 40(161): 47–89

    Article  MATH  MathSciNet  Google Scholar 

  52. Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations (in Russian). PhD thesis, Second doctorial thesis, Keldysh Institute, Moscow (1990)

  53. Stynes M. and Tobiska L. (1998). A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numer. Algorithms 18: 337–360

    Article  MATH  MathSciNet  Google Scholar 

  54. Stynes M. and Tobiska L. (2003). The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis, enhancement of accuracy. SIAM J. Numer. Anal. 41(5): 1620–1642

    Article  MATH  MathSciNet  Google Scholar 

  55. White A.B. (1979). On selection of equidistributing meshes for two-point boundary-value problems. SIAM J. Numer. Anal. 16: 472–502

    Article  MATH  MathSciNet  Google Scholar 

  56. Zhang Z.M. (2002). Finite element superconvergence approximation for one-dimensional singularly perturbed problems. Numer. Meth. PDEs 18: 374–395

    MATH  Google Scholar 

  57. Zhang Z.M. (2003). Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. Math. Comput. 72(243): 1147–1177

    Article  MATH  Google Scholar 

  58. Zhou G. and Rannacher R. (1996). Pointwise superconvergence of the streamline diffusion finite element method. Numer. Meth. PDEs 12, CMP 96(05): 123–145

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Additional information

This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang Professorship through Peking University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Xu, J. Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math. 109, 167–191 (2008). https://doi.org/10.1007/s00211-007-0118-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0118-6

Mathematics Subject Classification (2000)

Navigation