Abstract
The stability and accuracy of a standard finite element method (FEM) and a new streamline diffusion finite element method (SDFEM) are studied in this paper for a one dimensional singularly perturbed connvection-diffusion problem discretized on arbitrary grids. Both schemes are proven to produce stable and accurate approximations provided that the underlying grid is properly adapted to capture the singularity (often in the form of boundary layers) of the solution. Surprisingly the accuracy of the standard FEM is shown to depend crucially on the uniformity of the grid away from the singularity. In other words, the accuracy of the adapted approximation is very sensitive to the perturbation of grid points in the region where the solution is smooth but, in contrast, it is robust with respect to perturbation of properly adapted grid inside the boundary layer. Motivated by this discovery, a new SDFEM is developed based on a special choice of the stabilization bubble function. The new method is shown to have an optimal maximum norm stability and approximation property in the sense that \(\|u-u_{N}\|_{\infty}\leq C\inf_{v_{N}\in V^{N}}\|u-v_{N}\|_{\infty},\) where u N is the SDFEM approximation in linear finite element space V N of the exact solution u. Finally several optimal convergence results for the standard FEM and the new SDFEM are obtained and an open question about the optimal choice of the monitor function for the moving grid method is answered.
Similar content being viewed by others
References
Bakhalov N.S. (1969). Towards optimization of methods for solving boundary value problems in the presence of boundary layers (in Russian). Zh. Vychisl. Mater. Mater. Fiz. 9: 841–859
Borouchaki, H., Castro-Diaz, M.J., George, P.L., Hecht, F., Mohammadi, B.: Anisotropic adaptive mesh generation in two dimensions for CFD. In: 5th International Conference On Numerical Grid Generation in Computational Field Simulations, vol.3, pp.197–206. Mississppi State University (1996)
Brezzi F., Hughes T.J.R., Marini L.D., Russo A. and Süli E. (1999). A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 36(4): 1933–1948
Brezzi F., Marini D. and Süli E. (2000). Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math. 85: 31–47
Brezzi F. and Russo A. (1994). Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4: 571–587
Cao W., Huang W. and Russell R.D. (1999). A study of monitor functions for two dimensional adaptive mesh generation. SIAM J. Sci. Comput. 20: 1978–1994
Carey G.F. and Dinh H.T. (1985). Grading functions and mesh redistribution. SIAM J. Numer. Anal. 22(5): 1028–1040
Chen, L.: Mesh smoothing schemes based on optimal Delaunay triangulations. In: 13th International Meshing Roundtable, pp.109–120. Sandia National Laboratories, Williamsburg (2004)
Chen L. (2005). New analysis of the sphere covering problems and optimal polytope approximation of convex bodies. J. Approx. Theory 133(1): 134–145
Chen, L., Sun, P., Xu, J.: Multilevel homotopic adaptive finite element methods for convection dominated problems. In: The Proceedings for 15th Conferences for Domain Decomposition Methods. Lecture Notes in Computational Science and Engineering 40, pp.459–468. Springer, Heidelberg (2004)
Chen L., Sun P. and Xu J. (2007). Optimal anisotropic simplicial meshes for minimizing interpolation errors in L p-norm. Math. Comput. 76: 179–204
Chen L. and Xu J. (2004). Optimal Delaunay triangulations. J. Comput. Math. 22(2): 299–308
Chen, L., Xu, J.: An optimal streamline diffusion finite element method for a singularly perturbed problem. In: AMS Contemporary Mathematics Series: Recent Advances in Adaptive Computation, vol.383, pp.236–246, Hangzhou (2005)
Chen, Y.: Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. In: Proceedings of the 6th japan-china joint seminar on numerical mathematics (tsukuba, 2002). J. Comput. Appl. Math. 159(1), 25–34 (2003)
Chen Y. (2006). Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid. Adv. Comput. Math. 24: 197–212
D’Azevedo E.F. and Simpson R.B. (1989). On optimal interpolation triangle incidences. SIAM J. Sci. Statist. Comput. 6: 1063–1075
de Boor C. (1973). Good approximation by splines with variable knots. Int. Seines Numer. Math, Birkhauser Verlag, Basel 21: 57–72
Boor C. de(1974). Good approximation by splines with variables knots II. In: Watson, G.A. (eds) Proceedings of the Eleventh International Conference on Numerical Methods in Fluid Dynamics, vol. 363., pp 12–20. Springer, Dundee
Devore R.A. and Lorentz G.G. (1993). Constructive Approximation. Springer, New York
Dolejšì V. and Felcman J. (2004). Anisotropic mesh adaptation for numerical solution of boundary value problems. Numer. Methods Partial Differ. Equ. 20: 576–608
Farrell P.A., Hegarty A.F., Miller J.J.H., O’Riordan E. and Shishkin G.I. (2004). Singularly perturbed convection-diffusion problems with boundary and weak interior layers. J. Comput. Appl. Math. 166: 131–151
Franca L.P. and Russo A. (1996). Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles. Appl. Math. Lett. 9: 83–88
Habashi, W.G., Fortin, M., Dompierre, J., Vallet, M.G., Ait-Ali-Yahia, D., Bourgault, Y., Robichaud, M.P., Tam, A., Boivin, S.: Anisotropic mesh optimization for structured and unstructured meshes. In: 28th Computational Fluid Dynamics Lecture Series. von Karman Institute (1997)
Huang W. (2001). Practical aspects of formulation and solution of moving mesh partial differential equations. J. Comput. Phys. 171: 753–775
Huang W. (2001). Variational mesh adaptation: isotropy and equidistribution. J. Comput. Phys. 174: 903–924
Huang W. and Sun W. (2003). Variational mesh adaptation. II: Error estimates and monitor functions. J. Comput. Phys. 184: 619–648
Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng, pp.127, no. 1–4, 387–401 (1995)
Hughes T.J.R. and Brooks A. (1979). A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (eds) Finite Element Methods for Convection Dominated Flows, AMD, vol. 34, pp 19–35. ASME, New York
Hughes T.J.R., Feijoo G., Mazzei L. and Quincy J.B. (1998). The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166: 3–24
Johnson C. and Nvert U. (1981). An analysis of some finite element methods for advection-diffusion problems. In: Axelsson, O., Frank, L.S. and Vander Sluis, A. (eds) Analytical and Numerical Approaches to Asymptotic Problems in Analysis., pp 99–116. Amsterdam, NorthHolland
Johnson C., Schatz A.H. and Wahlbin L.B. (1987). Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comput. 49: 25–38
Kellogg R.B. and Tsan A. (1978). Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32: 1025–1039
Kopteva N.V. (1999). Uniform convergence with respect to a small parameter of a scheme with central difference on refining grids. Comput. Math. Math. Phys. 39(10): 1594–1610
Kopteva N.V. (2001). Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(2): 423–441
Kopteva N.V. and Stynes M. (2001). A robust adaptive method for quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39: 1446–1467
Lenferink W. (2000). Pointwise convergence of approximations to a convection-diffusion equation on a Shishkin mesh. Appl. Numer. Math. 32(1): 69–86
Linß T. (2001). Sufficient conditions for uniform convergence on layer-adapted grids. Appl. Numer. Math. 37: 241–255
Linß T. (2003). Layer-adapted meshes for convectioni-diffusion problems. Comput. Methods Appl. Mech. Eng. 192: 1061–1105
Linß T. and Stynes M. (2001). The SDFEM on Shishkin meshes for linear convection-diffusion problems. Numer. Math. 87: 457–484
Miller J.J.H., O’Riordan E. and Shishkin G.I. (1995). On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA J. Numer. Anal. 15(1): 89–99
Miller J.J.H., O’Riordan E. and Shishkin G.I. (1996). Fitted Numerical Methods For Singular Perturbation Problems. World Scientific, Singapore
Morton K.W. (1996). Numerical Solution of Convection-Diffusion Problems, volume 12 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London
Nadler E. (1986). Piecewise linear best L 2 approximation on triangulations. In: Chui, C.K., Schumaker, L.L. and Ward, J.D. (eds) Approximation Theory, vol. V, pp 499–502. Academic, New York
Niijima K. (1990). Pointwise error estimates for a streamline diffusion finite element scheme. Numer. Math. 56: 707–719
Qiu Y., Sloan D.M. and Tang T. (2000). Convergence analysis of an adaptive finite difference method for a singular perturbation problem. J. Comput. Appl. Math. 116: 121–143
Roos H.G. (1998). Layer-adapted grids for singular perturbation problems. ZAMM, Z. Angew. Math. Mech. 78(5): 291–309
Roos H.G., Stynes M. and Tobiska L. (1996). Numerical Methods for Singularly Perturbed Differential Equations, volume 24 of Springer series in Computational Mathematics. Springer, Heidelberg
Roos H.G. and Zarin H. (2003). The streamline-diffusion method for a convection-diffusion problem with a point source. J. Comput. Appl. Math. 150: 109–128
Sangalli G. (2003). Quasi optimality of the supg method for the one-dimensional adavection-diffusion problem. SIAM J. Numer. Anal. 41(4): 1528–1542
Schatz A.H. and Wahlbin L.B. (1982). On the quasi-optimality in L ∞ of the \(\overset{\circ}{H^1}\) -projection into finite element spacesMath. Comput. 38(157): 1–22
Schatz A.H. and Wahlbin L.B. (1983). On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions. Math. Comput. 40(161): 47–89
Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations (in Russian). PhD thesis, Second doctorial thesis, Keldysh Institute, Moscow (1990)
Stynes M. and Tobiska L. (1998). A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numer. Algorithms 18: 337–360
Stynes M. and Tobiska L. (2003). The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis, enhancement of accuracy. SIAM J. Numer. Anal. 41(5): 1620–1642
White A.B. (1979). On selection of equidistributing meshes for two-point boundary-value problems. SIAM J. Numer. Anal. 16: 472–502
Zhang Z.M. (2002). Finite element superconvergence approximation for one-dimensional singularly perturbed problems. Numer. Meth. PDEs 18: 374–395
Zhang Z.M. (2003). Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. Math. Comput. 72(243): 1147–1177
Zhou G. and Rannacher R. (1996). Pointwise superconvergence of the streamline diffusion finite element method. Numer. Meth. PDEs 12, CMP 96(05): 123–145
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang Professorship through Peking University.
Rights and permissions
About this article
Cite this article
Chen, L., Xu, J. Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math. 109, 167–191 (2008). https://doi.org/10.1007/s00211-007-0118-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-007-0118-6