Skip to main content

Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper proposes and analyzes a finite element method for a nonlinear singular elliptic equation arising from the black hole theory in the general relativity. The nonlinear equation, which was derived and analyzed by Huisken and Ilmanen in (J Diff Geom 59:353–437), represents a level set formulation for the inverse mean curvature flow describing the evolution of a hypersurface whose normal velocity equals the reciprocal of its mean curvature. We first propose a finite element method for a regularized flow which involves a small parameter ɛ; a rigorous analysis is presented to study well-posedness and convergence of the scheme under certain mesh-constraints, and optimal rates of convergence are verified. We then prove uniform convergence of the finite element solution to the unique weak solution of the nonlinear singular elliptic equation as the mesh size h and the regularization parameter ɛ both tend to zero. Computational results are provided to show the efficiency of the proposed finite element method and to numerically validate the “jumping out” phenomenon of the weak solution of the inverse mean curvature flow. Numerical studies are presented to evidence the existence of a polynomial scaling law between the mesh size h and the regularization parameter ɛ for optimal convergence of the proposed scheme. Finally, a numerical convergence study for another approach recently proposed by R. Moser (The inverse mean curvature flow and p-harmonic functions. preprint U Bath, 2005) for approximating the inverse mean curvature flow via p-harmonic functions is also included.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adams R.A. (1975). Sobolev Spaces. Academic, New York

    MATH  Google Scholar 

  2. 2.

    Bray H. (2001). Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Diff. Geom. 59: 177–267

    MATH  MathSciNet  Google Scholar 

  3. 3.

    Brenner S.C. and Scott L.R. (1994). The Mathematical Theory of Finite Element Methods. Springer, Heidelberg

    MATH  Google Scholar 

  4. 4.

    Carroll S.M. (2003). Spacetime and Geometry—An Introduction to General Relativity. Addison Wesley, Reading

    Google Scholar 

  5. 5.

    Crandall M.G., Ishii H. and Lions P.L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27: 1–67

    MATH  MathSciNet  Google Scholar 

  6. 6.

    Chen Y.-G., Giga Y. and Goto S. (1991). Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Diff. Geom. 33: 749–786

    MATH  MathSciNet  Google Scholar 

  7. 7.

    Ciarlet, P.G.: Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, I, pp 17–351. North-Holland, Amsterdam (1991)

  8. 8.

    Crouzeix M. and Thomee V. (1987). The stability in L p and \(W^{1}_p\) of the L2-projection onto Finite element Function Spaces. Math. Comp. 48: 521–532

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Dobrowolski M. and Rannacher R. (1980). Finite element methods for nonlinear elliptic systems of second order. Math. Nachr. 94: 155–172

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    Douglas J. Jr, Santos E., Sheen D. and Schreyer L. (1993). Frequency domain treatment of one-dimensional scalar waves. Math. Models Methods Appl.-Sci. 3: 171–194

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Evans L.C. and Spruck J. (1991). Motion of level sets by mean curvature. I. J. Diff. Geom. 33: 635–681

    MATH  MathSciNet  Google Scholar 

  12. 12.

    Geroch R. (1973). Energy extraction. Ann. New York Acad. Sci. 224: 108–117

    Article  Google Scholar 

  13. 13.

    Feng X. and Prohl A. (2003). Analysis of total variation flow and its finite element approximations. Math. Model. Numer. Anal. 37: 533–556

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Feng X., Prohl A. and von Oehsen M. (2005). Rate of convergence of regularization procedures and finite element approximations for the total variation flow. Numer. Math. 100: 441–456

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Gilbarg D. and Trudinger N. (2001). Elliptic Partial Differential Equations of Second Order, 3rd edn. Springer, Heidelberg

    MATH  Google Scholar 

  16. 16.

    Girault V. and Raviart P.A. (1986). Finite element methods for Navier–Stokes equations. Springer, Heidelberg

    MATH  Google Scholar 

  17. 17.

    Huisken G. and Ilmanen T. (2001). The inverse mean curvature flow and the Riemannian Penrose Inequality. J. Diff. Geom. 59: 353–437

    MATH  MathSciNet  Google Scholar 

  18. 18.

    Huisken, G., Ilmanen, T.: A note on the inverse mean curvature flow. In: Proceedings of Workshop at Saitama University (September 1997), March 1998

  19. 19.

    Holder M. (2000). Contracting spacelike hypersurfaces by their inverse mean curvature. J. Austral. Math. Soc. Ser. A. 68: 121–133

    MathSciNet  Article  Google Scholar 

  20. 20.

    Jang P.S. (1976). On positive energy conjecture. J. Math. Phys. 17: 141–145

    Article  MathSciNet  Google Scholar 

  21. 21.

    Jang P.S. (1979). On the positivity of the mass for black hole space-times. Commun. Math. Phys. 69: 257–266

    Article  MathSciNet  Google Scholar 

  22. 22.

    Jang P.S. and Wald R.M. (1977). The positive energy conjecture and the cosmic censorship hypothesis. J. Math. Phys. 18: 41–44

    Article  MathSciNet  Google Scholar 

  23. 23.

    Ladyženskaja O.A. and Uarlceva N.N. (1967). Linear and Quasilinear Elliptic Equations. Academic, New York

    Google Scholar 

  24. 24.

    Osher S. and Fedkiw R. (2003). Level Set Methods and Dynamic Implicit Surfaces. Springer, New York

    MATH  Google Scholar 

  25. 25.

    Osher S. and Sethian J.A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79: 12–49

    MATH  Article  MathSciNet  Google Scholar 

  26. 26.

    Pasch, E.: Numerische Verfahren zur Berechnung von Krümmungsflüssen. PhD Dissertation, Universität Tübingen (1998)

  27. 27.

    Pousin J. and Rappaz J. (1994). Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69: 213–231

    MATH  Article  MathSciNet  Google Scholar 

  28. 28.

    Simader C.G. (1972). On Dirichlet’s Boundary Value Problem. Lecture Notes in Mathematics, No. 268. Springer, Heidelberg

    Google Scholar 

  29. 29.

    Schoen R. and Yau S.-T. (1979). On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65: 45–76

    MATH  Article  MathSciNet  Google Scholar 

  30. 30.

    Schoen R. and Yau S.-T. (1981). Proof of the positive mass theorem II. Commun. Math. Phys. 79: 231–260

    MATH  Article  MathSciNet  Google Scholar 

  31. 31.

    Schatz A. (1974). An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28: 959–962

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Feng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, X., Neilan, M. & Prohl, A. Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity. Numer. Math. 108, 93–119 (2007). https://doi.org/10.1007/s00211-007-0111-0

Download citation

Mathematics Subject Classification (2000)

  • 65N30
  • 65N12
  • 35J70
  • 83C57