Skip to main content
Log in

Barycentric rational interpolation with no poles and high rates of approximation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

It is well known that rational interpolation sometimes gives better approximations than polynomial interpolation, especially for large sequences of points, but it is difficult to control the occurrence of poles. In this paper we propose and study a family of barycentric rational interpolants that have no real poles and arbitrarily high approximation orders on any real interval, regardless of the distribution of the points. These interpolants depend linearly on the data and include a construction of Berrut as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baltensperger R., Berrut J.-P., Noël B. (1999). Exponential convergence of a linear rational interpolant between transformed Chebychev points. Math.Comput. 68(227): 1109–1120

    Article  MATH  Google Scholar 

  2. Barry P.J., Goldman R.N. (1988). A recursive evaluation algorithm for a class of Catmull-Rom splines. ACM SIGGRAPH Comput. Graph. 22(4): 199–204

    Article  Google Scholar 

  3. Berrut J.-P. (1988). Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15(1): 1–16

    Article  MATH  Google Scholar 

  4. Berrut, J.-P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational interpolation. In: de Bruin, M.G., Mache, D.H., Szabados, J., (eds) Trends and Applications in Constructive Approximation. International Series of Numerical Mathematics, vol. 151, pp 27–51. Birkhäuser, Basel (2005)

  5. Berrut J.-P., Mittelmann H.D. (1997). Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval. Comput. Math. Appl. 33(6): 77–86

    Article  MATH  Google Scholar 

  6. Berrut J.-P., Trefethen L.N. (2004). Barycentric Lagrange interpolation. SIAM Rev. 46(3): 501–517

    Article  MATH  Google Scholar 

  7. Catmull, E., Rom, R.: A class of local interpolating splines. In: Barnhill R.E., Riesenfeld R.F. (eds) Computer Aided Geometric Design, pp. 317–326. Academic, New York (1974)

  8. Davis P.J., Rabinowitz P. (1984). Methods of numerical integration, 2nd edn. Computer Science and Applied Mathematics. Academic, Orlando

    Google Scholar 

  9. de Boor, C.: A practical guide to splines, revised edn. Applied Mathematical Sciences, vol. 27. Springer, Heidelberg (2001)

  10. Dupuy M. (1948). Le calcul numérique des fonctions par l’interpolation barycentrique. Comptes Rendus de l’Académie des Sciences. Série I, Mathématique 226: 158–159

    MATH  Google Scholar 

  11. Franke R. (1982). Scattered data interpolation: test of some methods. Math. Comput. 38(157): 181–200

    Article  MATH  Google Scholar 

  12. Franke R., Nielson G. (1980). Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11): 1691–1704

    Article  MATH  Google Scholar 

  13. Gordon W.J., Wixom J.A. (1978). Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation. Math. Comput. 32(141): 253–264

    Article  MATH  Google Scholar 

  14. Higham N.J. (2004). The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4): 547–556

    Article  MATH  Google Scholar 

  15. Hormann K., Floater M.S. (2006). Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4): 1424–1441

    Article  Google Scholar 

  16. Isaacson E., Keller H.B. (1994). Analysis of numerical methods. Dover, New York

    Google Scholar 

  17. Lancaster P., Salkauskas K. (1981). Surfaces generated by moving least squares methods. Math. Comput. 37(155): 141–158

    Article  MATH  Google Scholar 

  18. Levin D. (1998). The approximation power of moving least-squares. Math. Comput. 67(224): 1517–1531

    Article  MATH  Google Scholar 

  19. Ruprecht, D., Müller, H.: Free form deformation with scattered data interpolation methods. In: Farin G., Hagen H., Noltemeier H., Knödel W. (eds.) Geometric Modelling. Computing Supplementum, vol. 8, pp. 267–281. Springer, Heidelberg (1993)

  20. Schneider C., Werner W. (1986). Some new aspects of rational interpolation. Math. Comput. 47(175): 285–299

    Article  MATH  Google Scholar 

  21. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 23rd ACM national conference, pp. 517–524. ACM Press, (1968)

  22. Taylor W.J. (1945). Method of Lagrangian curvilinear interpolation. J. Res. Nat. Bureau Stand. 35: 151–155

    MATH  Google Scholar 

  23. Tee T.W., Trefethen L.N. (2006). A rational spectral collocation method with adaptively transformed Chebyshev grid points. SIAM J. Sci. Comput. 28(5): 1798–1811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Floater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floater, M.S., Hormann, K. Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007). https://doi.org/10.1007/s00211-007-0093-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0093-y

Mathematics Subject Classification (2000)

Navigation