Skip to main content
Log in

An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Given a function f on a bounded open subset Ω of \({\mathbb{R}}^n\) with a Lipschitz-continuous boundary, we obtain a Sobolev bound involving the values of f at finitely many points of \(\overline\Omega\) . This result improves previous ones due to Narcowich et al. (Math Comp 74, 743–763, 2005), and Wendland and Rieger (Numer Math 101, 643–662, 2005). We then apply the Sobolev bound to derive error estimates for interpolating and smoothing (m, s)-splines. In the case of smoothing, noisy data as well as exact data are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A. (1975). Sobolev Spaces. Academic, New York

    MATH  Google Scholar 

  2. Adams R.A. and Fournier J.J.F. (2003). Sobolev Spaces. Academic, New York

    MATH  Google Scholar 

  3. Arcangéli R., López de Silanes M.C. and Torrens J.J. (2004). Multidimensional Minimizing Splines. Theory and Applications. Grenoble Science. Kluwer Academic Publishers, Boston

    Google Scholar 

  4. Arcangéli R. and Ycart B. (1993). Almost sure convergence of smoothing D m-splines for noisy data. Numer. Math. 66: 281–294

    Article  MATH  MathSciNet  Google Scholar 

  5. Bezhaev A.Y. and Vasilenko V.A. (2001). Variational Theory of Splines. Kluwer Academic/Plenum Publishers, New York

    MATH  Google Scholar 

  6. Bouleau N. (1986). Probabilités de l’Ingénieur. Hermann, Paris

    MATH  Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002). Firstly published by North-Holland, Amsterdam (1978)

  8. Cox D. (1984). Multivariate smoothing spline functions. SIAM J. Numer. Anal. 21(4): 789–813

    Article  MATH  MathSciNet  Google Scholar 

  9. Craven P. and Wahba G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31: 377–403

    Article  MATH  MathSciNet  Google Scholar 

  10. Duchon J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Lecture Notes Math. 571: 85–100

    Article  MathSciNet  Google Scholar 

  11. Duchon J. (1978). Sur l’erreur d’interpolation des fonctions de plusieurs variables par les D m-splines. RAIRO Anal. Numer. 12(4): 325–334

    MATH  MathSciNet  Google Scholar 

  12. Grisvard P. (1985). Elliptic Problems in Nonsmooth Domains. Pitman, Boston

    MATH  Google Scholar 

  13. Johnson M.J. (2004). An error analysis for radial basis function interpolation. Numer. Math. 98: 675–694

    Article  MATH  MathSciNet  Google Scholar 

  14. Johnson M.J. (2004). The L p -approximation order of surface spline interpolation for 1 ≤ p ≤ 2. Constr. Approx. 20: 303–324

    Article  MATH  MathSciNet  Google Scholar 

  15. Le Gia Q.T., Narcowich F.J., Ward J.D. and Wendland H. (2006). Continuous and discrete least-squares approximation by radial basis functions on spheres. J. Approx. Theory 143: 124–133

    Article  MATH  MathSciNet  Google Scholar 

  16. Light W. and Wayne H. (1998). On power functions and error estimates for radial basis function interpolation. J. Approx. Theory 92: 245–266

    Article  MATH  MathSciNet  Google Scholar 

  17. López de Silanes M.C. and Arcangéli R. (1989). Estimations de l’erreur d’approximation par splines d’interpolation et d’ajustement d’ordre (m, s). Numer. Math. 56: 449–467

    Article  MATH  MathSciNet  Google Scholar 

  18. López de Silanes M.C. and Arcangéli R. (1991). Sur la convergence des D m-splines d’ajustement pour des données exactes ou bruitées. Rev. Mat. Univ. Complut. Madrid 4(2–3): 279–294

    MATH  MathSciNet  Google Scholar 

  19. Madych W.R. (2006). An estimate for multivariate interpolation II. J. Approx. Theory 142: 116–128

    Article  MATH  MathSciNet  Google Scholar 

  20. Madych W.R. and Potter E.H. (1985). An estimate for multivariate interpolation. J. Approx. Theory 43: 132–139

    Article  MATH  MathSciNet  Google Scholar 

  21. Narcowich F.J., Ward J.D. and Wendland H. (2005). Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comp. 74: 743–763

    Article  MATH  MathSciNet  Google Scholar 

  22. Narcowich F.J., Ward J.D. and Wendland H. (2006). Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24: 175–186

    Article  MATH  MathSciNet  Google Scholar 

  23. Nečas J. (1967). Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris

    Google Scholar 

  24. Ragozin D. (1983). Error bounds for derivative estimates based on spline smoothing of exact or noisy data. J. Approx. Theory 37: 335–355

    Article  MATH  MathSciNet  Google Scholar 

  25. Sanchez, A.M.: Sur l’estimation des erreurs d’approximation et d’interpolation polynomiales dans les espaces de Sobolev d’ordre non entier. Thèse de 3e cycle, Université de Pau et des Pays de l’Adour (1984)

  26. Sanchez A.M. and Arcangéli R. (1984). Estimations des erreurs de meilleure approximation polynomiale et d’interpolation de Lagrange dans les espaces de Sobolev d’ordre non entier. Numer. Math. 45: 301–321

    Article  MATH  MathSciNet  Google Scholar 

  27. Stein E. (1970). Singular Integrals and Differentiability Properties of Functions. Princenton University Press, Princenton, New Jersey

    MATH  Google Scholar 

  28. Strang G. (1972). Approximation in the Finite Element Method. Numer. Math. 19: 81–98

    Article  MATH  MathSciNet  Google Scholar 

  29. Utreras F. (1988). Convergence rates for multivariate smoothing spline functions. J. Approx. Theory 52: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  30. Wahba G. (1975). Smoothing noisy data by spline functions. Numer. Math. 24: 383–393

    Article  MATH  MathSciNet  Google Scholar 

  31. Wendland H. and Rieger C. (2005). Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101: 643–662

    Article  MathSciNet  Google Scholar 

  32. Wu Z.M. and Schaback R. (1993). Local error estimates for radial basis function interpolation to scattered data. IMA J. Numer. Anal. 13: 13–27

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Torrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arcangéli, R., López de Silanes, M.C. & Torrens, J.J. An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing. Numer. Math. 107, 181–211 (2007). https://doi.org/10.1007/s00211-007-0092-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0092-z

Mathematics Subject Classification (2000)

Navigation