Skip to main content
Log in

A posteriori error estimates for the Morley plate bending element

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A local a posteriori error indicator for the well known Morley element for the Kirchhoff plate bending problem is presented. The error indicator is proven to be both reliable and efficient. The technique applied is general and it is shown to have also other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S. (1965). Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton

    MATH  Google Scholar 

  2. Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A family of C 0 finite elements for Kirchhoff plates. Helsinki University of Technology, Insitute of Mathematics, Research Reports A483, http://math.tkk.fi/reports. Espoo (2005)

  3. Brenner S.C. and Scott L.R. (1994). The Mathematical Theory of Finite Element Methods. Springer, Berlin

    MATH  Google Scholar 

  4. Brezzi F. and Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer, New York

    MATH  Google Scholar 

  5. Carstensen C., Bartels S. and Jansche S. (2002). A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92: 233–256

    Article  MATH  MathSciNet  Google Scholar 

  6. Carstensen C. and Dolzmann G. (1998). A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81: 187–209

    Article  MATH  MathSciNet  Google Scholar 

  7. Carstensen, C., Hu, J., Orlando, A.: Framework for the a posteriori error analysis of nonconforming finite elements. Preprint 2005-11, Insitut für Mathematik, Humboldt-Universität zu Berlin, http://www.mathematik.hu-berlin.de/publ/pre/2005/P-05-11.pdf

  8. Charbonneau A., Dossou K. and Pierre R. (1997). A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem. Numer. Meth. Part. Differ. Equ. 13: 93–111

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciarlet P.G. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  10. Clément P. (1975). Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9: 77–84

    Google Scholar 

  11. Dari E., Duran R., Padra C. and Vampa V. (1996). A posteriori error estimators for nonconforming finite element methods. Math. Mod. Numer. Anal. 30: 385–400

    MATH  MathSciNet  Google Scholar 

  12. Kanshat G. and Suttmeier F.-T. (1999). A posteriori error estimates for nonconforming finite element schemes. CALCOLO 36: 129–141

    Article  MathSciNet  Google Scholar 

  13. Ming, W., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. Online First (2006)

  14. Morley L.S.D. (1968). The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19: 149–169

    Google Scholar 

  15. Rannacher R. and Turek S. (1992). Simple Nonconforming Quadrilateral Stokes Element. Num. Methods Part. Diff. Equ. 8: 97–111

    Article  MATH  MathSciNet  Google Scholar 

  16. Shi Z.C. (1990). Error estimates for the Morley element. Chin. J. Numer. Math. Appl. 12: 102–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beirão da Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Veiga, L.B., Niiranen, J. & Stenberg, R. A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007). https://doi.org/10.1007/s00211-007-0066-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0066-1

Mathematics Subject Classification

Navigation