Numerische Mathematik

, Volume 105, Issue 4, pp 603–631 | Cite as

Adaptive Galerkin boundary element methods with panel clustering

  • Wolfgang HackbuschEmail author
  • Boris N. Khoromskij
  • Stefan Sauter


In this paper, we will propose a boundary element method for solving classical boundary integral equations on complicated surfaces which, possibly, contain a large number of geometric details or even uncertainties in the given data. The (small) size of such details is characterised by a small parameter \(\varepsilon\) and the regularity of the solution is expected to be low in such zones on the surface (which we call the wire-basket zones). We will propose the construction of an initial discretisation for such type of problems. Afterwards standard strategies for boundary element discretisations can be applied such as the h, p, and the adaptive hp-version in a straightforward way.

For the classical boundary integral equations, we will prove the optimal approximation results of our so-called wire-basket boundary element method and discuss the stability aspects. Then, we construct the panel-clustering and \(\mathcal{H}\)-matrix approximations to the corresponding Galerkin BEM stiffness matrix. The method is shown to have an almost linear complexity with respect to the number of degrees of freedom located on the wire basket.

Mathematics Subject Classification

65F50 65F30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babuška I., Guo B. (1989) Regularity of the solution of elliptic problems with piecewise analytic data Part II. The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal. 20, 763–781CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bernstein S.N. (1926) Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle. Gauthier-Villars, PariszbMATHGoogle Scholar
  3. 3.
    Börm S., Löhndorf M., Melenk J-M. (2005) Approximation of integral operators by variable-order interpolation. Numer. Math. 99, 605–643MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brückner-Foit, A., Huang, X., Motoyashiki, Y. Mesoscopic simulations of damage accumulation under fatigue loading. ECF 15, Stockholm (2004)Google Scholar
  5. 5.
    Chen G., Zhou J. (1992) Boundary element methods. Academic, New YorkzbMATHGoogle Scholar
  6. 6.
    Costabel M. (1988) Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Elschner J. (1992) The double layer potential operator over polyhedral domains I: solvability in weighted Sobolev spaces. Appl. Anal. 45, 117–134MathSciNetzbMATHGoogle Scholar
  8. 8.
    Elschner J. (1995). On the exponential convergence of some boundary element methods for Laplace’s equation in non-smooth domains. In: Costabel M. et al. (eds). Boundary Value Problems and Integral Equations in Nonsmooth Domains. Dekker, New York, pp. 69–80Google Scholar
  9. 9.
    Erichsen S., Sauter S. (1998) Efficient automatic quadrature in 3-d Galerkin BEM. Comp. Meth. Appl. Mech. Eng. 157, 215–224CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Grasedyck L., Hackbusch W. (2003) Construction and arithmetics of \(\mathcal{H}\)-matrices. Computing 70, 295–334CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Grisvard P. (1985) Elliptic problems in non-smooth domains. Pitman, LondonGoogle Scholar
  12. 12.
    Guo B., Babuška I. (1997) Regularity of the solutions for problems on nonsmooth domains in \(\mathbb{R}^{3}\), Part 2: regularity in a neighborhood of edges Proc. R. Soc. Edinb., Sect. A127, 517–545Google Scholar
  13. 13.
    Hackbusch W. (1995) Integral equations. Theory and numerical treatment. ISNM 128. Birkhäuser, BaselGoogle Scholar
  14. 14.
    Hackbusch W. (1999) A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Part I: introduction to \(\mathcal{H}\)-matrices. Computing 62, 89–108CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Hackbusch W., Khoromskij B.N. (2000) A sparse \(\mathcal{H}\)-matrix arithmetic. Part II: application to multi-dimensional problems. Computing 64, 21–47MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hackbusch W., Khoromskij B.N. (2000) \(\mathcal{H}\)-Matrix approximation on graded meshes. In: Whiteman J.R. (eds) The Mathematics of Finite Elements and Applications X, MAFELAP 1999 Chapter 19. Elsevier, Amsterdam, pp. 307–316Google Scholar
  17. 17.
    Hackbusch W., Khoromskij B.N. (2001) Towards \(\mathcal{H}\)-matrix approximation of the linear complexity. Oper. Theory: Adv. Appl. 121, 194–220MathSciNetGoogle Scholar
  18. 18.
    Hackbusch W., Khoromskij B.N., Sauter S. (2000) On \(\mathcal{H}^{2}\)-matrices. In: Bungartz H.-J., Hoppe R., Zenger C. (eds). Lectures on Applied Mathematics. Springer, Berlin Heidelberg New York, pp. 9–29Google Scholar
  19. 19.
    Heuer N., Stephan E.P. (1998) Boundary integral operators in countably normed spaces. Math. Nachr. 191, 123–151MathSciNetzbMATHGoogle Scholar
  20. 20.
    Heuer N., Maischak M., Stephan E.P. (1999) Exponential convergence of the hp-version for the boundary element method on open surfaces. Numer. Math. 83(4): 641–666MathSciNetzbMATHGoogle Scholar
  21. 21.
    Khoromskij B.N. (2003) Hierarchical matrix approximation to Green’s function via boundary concentrated FEM. J. Numer. Math. 11, 195–223CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Khoromskij B.N., Melenk J.M. (2003) Boundary concentrated finite element methods. SIAM J. Numer. Anal. 41, 1–36CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Khoromskij B.N., Melenk J.M. (2002) Efficient direct solver for the boundary concentrated FEM in 2D. Computing 69, 91–117CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Melenk, J.M. hp-finite element methods for singular perturbations. Springer Lect. Notes Math., 1796 (2002)Google Scholar
  25. 25.
    Nicaise, S., Sauter, S.A. Efficient numerical solution of Neumann problems on compliclated domains. Universität Zürich, Calcolo 43, 95–120 (2006)Google Scholar
  26. 26.
    Petersdorff T.v., Stephan E.P. (1990) Decomposition in edge and corner singularities for the solution of the Dirichlet problem of the Laplacian in a polyhedron. Math. Nachr. 149, 71–104MathSciNetGoogle Scholar
  27. 27.
    Sauter, S.A. Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen. Ph.D. thesis, Inst. f. Prakt. Math., Universität Kiel (1992)Google Scholar
  28. 28.
    Sauter, S., Schwab, C. Randelementmethoden. B.G. Teubner (2004)Google Scholar
  29. 29.
    Schwab C. (1998) p- and hp-Finite Element Methods. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Stephan E.P. (2000) Multilevel methods for the h-, p-, and hp-versions of the boundary element method. J. Comput. Appl. Math. 125, 503–519CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Tadmor E. (1986) The exponential accuracy of Fourier and Chebychev differencing methods. SIAM J. Numer. Anal. 23, 1–23CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Wolfgang Hackbusch
    • 1
    Email author
  • Boris N. Khoromskij
    • 1
  • Stefan Sauter
    • 2
  1. 1.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations