Abstract
We study a generalized Crank–Nicolson scheme for the time discretization of a fractional wave equation, in combination with a space discretization by linear finite elements. The scheme uses a non-uniform grid in time to compensate for the singular behaviour of the exact solution at t = 0. With appropriate assumptions on the data and assuming that the spatial domain is convex or smooth, we show that the error is of order k 2 + h 2, where k and h are the parameters for the time and space meshes, respectively.
Similar content being viewed by others
References
Brunner H., Pedas A., Vainikko G. (2001) Piecewise polynomial collocation methods for Volterra integro-differential equations. SIAM J. Numer. Anal. 39, 957–982
Chandler G.A., Graham I.G. (1988) Product integration-collocation methods for noncompact integral operator equations. Math. Comp. 50, 125–138
Cuesta E., Lubich C., Palencia C. (2006) Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696
Fairweather G. (1994) Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal. 31, 444–460
Fujita Y.: Integral equation that interpolates the heat equation and the wave equation, I, II. Osaka J. Math. 27, 309–321, 797–804 (1990)
Kiryakova V.S. (2000) Multiple (multiindex) Mittag–Leffler functions and relation to generalized fractional calculus. J. Comput. Appl. Math. 118, 241–259
López-Fernández M., Palencia C. (2004) On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl. Numer. Math. 51, 289–303
López-Fernández M., Palencia C. (2006) A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350
López Marcos J.-C. (1990) A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27, 20–31
Lubich Ch. (1986) Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719
Lubich C. (1988) Convolution quadrature and discretized operational calculus, I, II. Numer. Math. 53, 129–145, 413–425
Lubich C.H., Sloan I.H., Thomée V. (1996) Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17
McLean W., Mustapha K.: A second-order accurate numerical method for a fractional wave equation. Preprint AMR05/37, School of Mathematics, The University of New South Wales
McLean W., Thomée V. (1993) Numerical solution of an evolution equation with a positive-type memory term. J. Austral. Math. Soc. Ser. B 35, 23–70
McLean W., Thomée V. (2004) Time discretization of an evolution equation via Laplace transform. IMA. J. Numer. Anal. 24, 439–463
McLean W., Thomée V., Wahlbin L.B. (1996) Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69
Metzler R., Klafter J. (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports 339, 1–77
Mittag–Leffler G. (1904) Sur la représentation analytique d’une branche uniforme d’une fonction monogéne. Acta Math. 29, 101–181
Pani A., Fairweather G. (2002) An H 1-Galerkin mixed finite element method for an evolution equation with a positive type memory term. SIAM J. Numer. Anal. 40: 1475–1490
te Riele H.J.J. (1982) Collocation methods for weakly singular second-kind Volterra integral equations with nonsmooth solution. IMA J. Numer. Anal. 2, 437–449
Schneider W.R., Wyss W. (1989) Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144
Sanz-Serna M.J. (1988) A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25, 319–327
Thomée V.: Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054. Springer, Berlin Heidelberg Newyork (1984)
Yan Y., Fairweather G. (1992) Orthogonal spline collocation methods for some partial integrodifferential equations. SIAM J. Numer. Anal. 29, 755–768
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McLean, W., Mustapha, K. A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007). https://doi.org/10.1007/s00211-006-0045-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0045-y