Skip to main content
Log in

Block band Toeplitz preconditioners derived from generating function approximations: analysis and applications

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We are concerned with the study and the design of optimal preconditioners for ill-conditioned Toeplitz systems that arise from a priori known real-valued nonnegative generating functions f(x,y) having roots of even multiplicities. Our preconditioned matrix is constructed by using a trigonometric polynomial θ(x,y) obtained from Fourier/kernel approximations or from the use of a proper interpolation scheme. Both of the above techniques produce a trigonometric polynomial θ(x,y) which approximates the generating function f(x,y), and hence the preconditioned matrix is forced to have clustered spectrum. As θ(x,y) is chosen to be a trigonometric polynomial, the preconditioner is a block band Toeplitz matrix with Toeplitz blocks, and therefore its inversion does not increase the total complexity of the PCG method. Preconditioning by block Toeplitz matrices has been treated in the literature in several papers. We compare our method with their results and we show the efficiency of our proposal through various numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelos J.R., Kaufman R.H., Henry M.S., Lenker T.D. (1989). Approximation Theory VI. Academic, New York

    Google Scholar 

  2. Arico, A., Donatelli, M.: A V-cycle multigrid for multilevel matrix algebras: proof of convergence. Numer. Math (to appear)

  3. Arico A., Donatelli M., Serra Capizzano S. (2004). V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26(1):186–214

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertero M., Boccacci P. (1998). Introduction to Inverse Problems in Imaging. Institute of Physics Publ, Bristol

    MATH  Google Scholar 

  5. Bhatia R. Fourier Series. Texts and Readings in Mathematics, New Delhi (1993).

  6. Bottcher A., Grudsky S. (1998). On the condition numbers of large semi-definite Toeplitz matrices. Linear Algebra Appl. 279:285–301

    Article  MathSciNet  Google Scholar 

  7. Brocwell P., Davis R. (1991). Time Series: Theory and Methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Chan R.H. (1991). Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11:333–345

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan R.H., Jin X.Q. (1992). A family of block preconditioners for block systems. SIAM J. Sci. Stat. Comput. 13:1218–1235

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan R.H., Ng M.K. (1996). Conjugate gradient method for Toeplitz systems. SIAM Rev. 38:427–482

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan R.H., Yeung M. (1992). Circulant preconditioners from kernels. SIAM J. Numer. Anal. 29:1093–1103

    Article  MATH  MathSciNet  Google Scholar 

  12. Chan T., Olkin J.A. (1994). Circulant preconditioner for Toeplitz-block systems. Numer. Algorithms 6:89–101

    Article  MATH  MathSciNet  Google Scholar 

  13. Di Benedetto F. (1997). Preconditioning of block Toeplitz matrices by sine transform. SIAM J. Sci. Comput. 18(2):499–515

    Article  MATH  MathSciNet  Google Scholar 

  14. Engl H., Hanke M., Neubauer A. (1996). Regularization of Inverse Problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  15. Estatico C. (2002). A class of filtering superoptimal preconditioners for highly ill-conditioned linear systems. BIT 42: 753–778

    Article  MATH  MathSciNet  Google Scholar 

  16. Fiorentino G., Serra Capizzano S. (1996). Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput. 17(4):1068–1081

    Article  MATH  MathSciNet  Google Scholar 

  17. Grenander U., Szegö G. (1984). Toeplitz Forms and their Applicationsorms and their Applications. 2nd ed. Chelsea, New York

    Google Scholar 

  18. Hanke M., Nagy J., Plemmons R. (1993). Preconditioned iterative regularization for ill-posed problems. In: Reichel L., Ruttal A., Varga R.S. (eds) Numerical linear algebra de Gruyter, Berlin pp. 141–163

  19. Hurvich C., Lu Y. (2005). On the complexity of the Preconditioned Conjugate Gradient algorithm for solving Toeplitz systems with a Fisher-Hartwig singularity. SIAM J. Matrix Anal. Appl. 27:638–653

    Article  MATH  MathSciNet  Google Scholar 

  20. Jackson D. (1930). The Theory of Approximation. American Mathematical Society, New York

    MATH  Google Scholar 

  21. Jin X.Q. (1996). Band-Toeplitz preconditioners for block Toeplitz systems. J. Comput. Appl. Math. 70:225–230

    Article  MATH  MathSciNet  Google Scholar 

  22. Korovkin P.P. (1960). Linear Operators and Approximation Theory. Hindustan Publishing Co., Delhi (English translation)

    Google Scholar 

  23. Ku T., Kuo C.J. (1992). On the spectrum of a family of preconditioned block Toeplitz matrices. SIAM J. Sci. Statist. Comput. 16:951–955

    Google Scholar 

  24. Lund J., Bowers K. (1992). Sinc Methods for Quadrature and Differential Equations. SIAM, UK

    MATH  Google Scholar 

  25. Ng M.K. (1999). Band preconditioners for block-Toeplitz-Toeplitz-block systems. Linear Algebra Appl. 259:307–327

    Article  Google Scholar 

  26. Ng M.K. (1999). Fast Iterative Methods for Symmetric Sinc–Galerkin systems. IMA J. Numer. Anal. 19:357–373

    Article  MATH  MathSciNet  Google Scholar 

  27. Ng M.K., Serra Capizzano S., Tablino Possio C. (2005). Numerical behaviour of multigrid for symmetric Sinc–Galerkin systems. Numer. Linear Algebra Appl. 12:261–269

    Article  MathSciNet  MATH  Google Scholar 

  28. Ng M.K., Chan R.H., Tang W.C. (1999). A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21:851–866

    Article  MATH  MathSciNet  Google Scholar 

  29. Noutsos D., Serra Capizzano S., Vassalos P. (2003). Spectral equivalence and matrix algebra preconditioners for multilevel Toeplitz systems: a negative result. Structured Matrices in Mathematics, Computer Science, and Engineering. Comtemp. Math. 323:313–322

    MathSciNet  Google Scholar 

  30. Noutsos D., Serra Capizzano S., Vassalos P. (2004). Matrix algebra preconditioners for Toeplitz systems do not insure optimal convergence rate. Theoret. Computer Sci. 315:557–579

    Article  MATH  MathSciNet  Google Scholar 

  31. Noutsos D., Serra Capizzano S., Vassalos P. (2005). A preconditioning proposal for ill-conditioned Hermitian two-level Toeplitz systems. Numer. Linear Algebra Appl. 12:231–239

    Article  MathSciNet  MATH  Google Scholar 

  32. Noutsos D., Serra Capizzano S., Vassalos P. (2006). Two-level Toeplitz preconditioning: approximation results for matrices and functions. SIAM J. Sci. Comput. 28:439–458

    Article  MATH  MathSciNet  Google Scholar 

  33. Noutsos D., Vassalos P. (2002). New band Toeplitz preconditioners for ill-conditioned symmetric positive definite Toeplitz systems. SIAM J. Matrix Anal. Appl. 23:728–743

    Article  MATH  MathSciNet  Google Scholar 

  34. Potts D., Steidl G. (1999). Preconditioners for ill-conditioned Toeplitz matrices. BIT 39:513–533

    Article  MATH  MathSciNet  Google Scholar 

  35. Potts D., Steidl G. (2001). Preconditioners for ill-conditioned Toeplitz matrices constructed from positive kernels. SIAM J. Sci. Comput. 22:1741–1761

    Article  MATH  MathSciNet  Google Scholar 

  36. Potts D., Steidl G. (2001). Preconditioning of Hermitian block-Toeplitz-Toeplitz-block matrices by level-1 preconditioners. Structured Matrices in Mathematics, Computer Science, and Engineering II, Comtemporary Math. 281:193–201

    MathSciNet  Google Scholar 

  37. Prestin J. (1987). On the approximation of de la Vallèe Pousin sums and interpolatory polynomial in Lipschitz norms. Analysis Mathematica 13:251–259

    Article  MATH  MathSciNet  Google Scholar 

  38. Plemmons R. Chan R.H., Nagy J. (1994). Circulant preconditioned Toeplitz least squares iterations. SIAM J. Matrix Anal. Appl. 15:80–97

    Article  MathSciNet  Google Scholar 

  39. Serra Capizzano S. (1994). Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems. BIT 34:326–337

    Article  MathSciNet  Google Scholar 

  40. Serra Capizzano S. (1997). On the extreme eigenvalues of Hermitian (block) Toeplitz matrices. Linear Algbra Appl. 270:109–129

    Article  MathSciNet  Google Scholar 

  41. Serra Capizzano S. (1997). Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems. Math. Comput. 66:651–665

    Article  MATH  MathSciNet  Google Scholar 

  42. Serra Capizzano S. (1997). Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 68(226):793–803

    MathSciNet  Google Scholar 

  43. Serra Capizzano S. (1998). A Korovkin-type theory for finite Toeplitz operators via matrix algebras. Numer. Math. 82:117–142

    Article  MathSciNet  Google Scholar 

  44. Serra Capizzano S. (1999). How to choose the best iterative strategy for symmetric Toeplitz . SIAM J. Numer. Anal. 36:1078–1103

    Article  MATH  MathSciNet  Google Scholar 

  45. Serra Capizzano S. (2002). Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences. Numer. Math. 92:433–465

    Article  MATH  MathSciNet  Google Scholar 

  46. Serra Capizzano S. (2002). Matrix algebra preconditioners for multilevel Toeplitz matrices are not superlinear. Linear Algebra Appl. 343–344, 303–319

    Google Scholar 

  47. Serra Capizzano S. (2003). Practical band Toeplitz preconditioning and boundary layer effects. Numer. Alg. 34:427–440

    Article  MATH  MathSciNet  Google Scholar 

  48. Serra Capizzano S., Tyrtyshnikov E. (1999). Any circulant-like preconditioner for multilevel is not superlinear. SIAM J. Matrix Anal. Appl. 22(1):431–439

    MathSciNet  Google Scholar 

  49. Serra Capizzano S., Tyrtyshnikov E. (2003). How to prove that a preconditioner can not be superlinear. Math. Comput. 73:1305–1316

    MathSciNet  Google Scholar 

  50. Sun H., Jin X.Q., Chang Q. (2001). Convergence of the multigrid method for ill conditioned block Toeplitz systems. BIT 41:179–190

    Article  MATH  MathSciNet  Google Scholar 

  51. Trottenberg U., Oosterlee C.W., Schüller A. (2001). Multigrid. Academic, London

    MATH  Google Scholar 

  52. Wei S., Goeckel D., Janaswamy R. (2005). On the asymptotic capacity of MIMO systems with antenna arrays of fixed length. IEEE Trans. Wireless Comm. 4:1608–1621

    Article  Google Scholar 

  53. Zygmund A. (1959). Trigonometric Series 2nd ed. Cambridge University, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Noutsos.

Additional information

This research was co-funded by the European Union in the framework of the program “Pythagoras I” of the “Operational Program for Education and Initial Vocational Training” of the 3rd Community Support Framework of the Hellenic Ministry of Education, funded by national sources (25%) and by the European Social Fund - ESF (75%). The work of the second and of the third author was partially supported by MIUR (Italian Ministry of University and Research), grant number 2004015437.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noutsos, D., Capizzano, S.S. & Vassalos, P. Block band Toeplitz preconditioners derived from generating function approximations: analysis and applications. Numer. Math. 104, 339–376 (2006). https://doi.org/10.1007/s00211-006-0020-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0020-7

Mathematics Subject Classification (1991)

Navigation