Numerische Mathematik

, Volume 103, Issue 4, pp 667–689 | Cite as

An Adaptive Finite Element Method for the H- ψ Formulation of Time-dependent Eddy Current Problems

  • Weiying ZhengEmail author
  • Zhiming Chen
  • Long Wang


In this paper, we develop an adaptive finite element method based on reliable and efficient a posteriori error estimates for the Hψ formulation of eddy current problems with multiply connected conductors. Multiply connected domains are considered by making “cuts”. The competitive performance of the method is demonstrated by an engineering benchmark problem, Team Workshop Problem 7, and a singular problem with analytic solution.

AMS subject classifications

65M60 65M50 78A25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammari H., Buffa A., Nédélec J.C. (2000). A justification of eddy current model for the maxwell equations. SIAM J Appl Math 60:1805–1823CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Amrouche C., Bernardi C., Dauge M., Girault V. (1998). Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci 21:823–864CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Babuška I., Rheinboldt C. (1978). Error estimates for adaptive finite element computations. SIAM J Numer Anal 15:736–754CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Beck R., Hiptmar R., Hoppe R.H.W., Wohlmoth B. (2000). Residual based a posteriori error estimations for eddy current computation. 34:159–182CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Beck, R., Hiptmar, R., Wohlmoth, B.: Hierarchical error estimator for eddy current computation. In: Neittaanmäki, P., Tiihonen, T. (eds.) ENUMATH 99–Proceedings of the 3rd European Conference on numerical mathematics and advanced applications, Jyväskylä, Finland, July 26-30, 2000, pp. 110–120 World Scientific, Singapore, 2000Google Scholar
  6. 6.
    Birman M.Sh., Solomyak M.Z. (1987). L 2-Theory of the Maxwell operator in arbitary domains. Usp Mat Nauk 42:61–76 (in Russian); Russ Math Surv 43, 75–96 (1987) (in English)MathSciNetGoogle Scholar
  7. 7.
    Bossavit A. (1998). Computational electromagnetism, variational formulations, edge elements, complementarity. Academic, BostonGoogle Scholar
  8. 8.
    Bouillault F., Ren Z., Razek A. (1990). Calculation of eddy currents in an asymmetrical conductor with a hole. COMPEL 9(Supple A):227–229Google Scholar
  9. 9.
    Chen Z., Dai S. (2001). Adaptive Galerkin method with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J Numer Anal 38:1961–1985CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen Z., Dai S. (2002). On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J Sci Comput 24:443–462CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Chen Z., Jia F. (2004). An adaptive finite element method with reliable and efficient error control for linear parabolic problems. Math Comput 73:1163–1197Google Scholar
  12. 12.
    Chen Z., Wu H. (2003). An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J Numer Anal 41:799–826CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Chen Z., Nochetto R.H., Schmidt A. (2000). An adaptive finite element method with error control for the continuous casting problem. Comput Methods Appl Mech Eng 189:249–276CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Chen, Z., Wang, L., Zheng, W.: An adaptive multilevel method for time-harmonic maxwell equations with singularities. Research Report, Institute of Computational Mathematics, Chinese Academy of Sciences (2006)Google Scholar
  15. 15.
    Ciarlet P.G. (1978). The finite element method for elliptic problems. North-Holland, AmsterdamCrossRefzbMATHGoogle Scholar
  16. 16.
    Clemens M., Weiland T. (1999). Transient eddy-current calculations with the FI-method. IEEE Trans Magn 35:1163–1166CrossRefGoogle Scholar
  17. 17.
    Costabel M., Dauge M., Nicaise S. (2003). Singularities of eddy current problems. ESAIM: Math Model Numer Anal 37:807–831CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Dhia A.B., Hazard C., Lohrengel S. (1999). A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J Appl Math 59:2028–2044CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Dular P., Henrotte F., Robert F., Genon A., Legros W. (1997). A generalized source magnetic field calculation method for inductors of any shape. IEEE Trans Magn 33:1398–1401CrossRefGoogle Scholar
  20. 20.
    Fujiwara K., Nakata T. (1990). Results for benchmark problem 7 (a symmetrical conductor with a hole). COMPEL 9:137–154Google Scholar
  21. 21.
    Girault V., Raviart P.A. (1986). Finite element methods for Naviar–Stokes equations. theory and algorithms. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Hiptmair R. (2002). Analysis of multilevel methods for eddy current problems. Math Comput 72:1–23MathSciNetGoogle Scholar
  23. 23.
    Li K., Ma Y. (1990). Hilbert-space methods for partial differential equations in mathematical physics (I) (in Chinese). Xi’an Jiaotong University press, Xi’an (China)Google Scholar
  24. 24.
    Monk P. (1998). A posteriori error indicators for Maxwell’s equations. J Comp Appl Math 100:173–190CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Morin P., Nochetto R.H., Siebert K.G. (2000). Data oscillations and convergence of adaptive FEM. SIAM J Numer Anal 38:466–488CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Nédélec J.C. (1980). Mixed finite elements in \(\mathbb{R}^3\). Numer Math 35:315–341CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Pasciak J.E., Zhao J. (2002). Overlapping Schwartz methods in H(curl) on polyhedral domains. East West J Numer Math 10:221–234MathSciNetzbMATHGoogle Scholar
  28. 28.
    Schmidt, A., Siebert, K.G.: ALBERT – An adaptive hierarchical finite element toolbox. the new version ALBERTA is available online from http://www.alberta-fem.deGoogle Scholar
  29. 29.
    Scott L.R., Zhang S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput 54:483–493CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Stein E.M. (1970). Singular integrals and differetiability properties of functions. Princeton University Press, PrincetonGoogle Scholar
  31. 31.
    Stephan, E., Maischak, M.: A posteriori error estimate for fem-bem couplings of three-dimensional electromagnetic problems. Report IFAM 72, Institut für Angewandte Mathematik, Universität Hannover, Hannover, Germany 2003Google Scholar
  32. 32.
    Teltscher M., Stephan E., Maischak M. (2003). A residual error estimator for an electromagnetic fem-bem coupling problem in \(\mathbb{R}^3\). Report IFAM 53, Institut für Angewandte Mathematik, Universität Hannover, Hannover, GermanyGoogle Scholar
  33. 33.
    Verfürth R. (1996). A review of a posteriori error estimation and adaptive mesh-refinement rechniques. Wiley, Chichester (Stuttgart)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.LSEC, Institute of Computational Mathematics, Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations