Advertisement

Numerische Mathematik

, Volume 103, Issue 4, pp 631–642 | Cite as

Efficient Computation of Analytic Bases in Evans Function Analysis of Large Systems

  • Jeffrey Humpherys
  • Björn Sandstede
  • Kevin ZumbrunEmail author
Original article

Abstract

In Evans function computations of the spectra of asymptotically constant-coefficient linearized operators of large systems, a problem that becomes important is the efficient computation of global analytically varying bases for invariant subspaces of the limiting coefficient matrices. In the case that the invariant subspace is spectrally separated from its complementary invariant subspace, we propose an efficient numerical implementation of a standard projection-based algorithm of Kato, for which the key step is the solution of an associated Sylvester problem. This may be recognized as the analytic cousin of a C k algorithm developed by Dieci and collaborators based on orthogonal projection rather than eigenprojection as in our case. For a one-dimensional subspace, it reduces essentially to an algorithm of Bridges, Derks and Gottwald based on path-finding and continuation methods.

Keywords

Solitary Wave Invariant Subspace Evans Function Diagonal Block Comput Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander J.C., Sachs R. (1995). Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation. Nonlinear World 2:471–507zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alexander J., Gardner R., Jones C.K.R.T. (1990). A topological invariant arising in the analysis of traveling waves. J Reine Angew Math 410:167–212zbMATHMathSciNetGoogle Scholar
  3. 3.
    Allen L., Bridges T.J. (2002). Numerical exterior algebra and the compound-matrix method. Numer Math 92:197–232CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Beyn W.-J. (1990). The numerical computation of connecting orbits in dynamical systems. IMA J Numer Anal 10:379–405zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bindel, D., Demmel, J., Friedman, M.J.: Continuation of invariant subspaces for large bifurcation problems. SIAM conference on applied linear algebra. Williamsburg (2003)Google Scholar
  6. 6.
    Bindel, D., Demmel, J., Friedman, M.J., Govaerts, W.J.F., Kuznetsov, Y.A.: Bifurcation analysis of large equilibrium systems in MATLAB. In: Proceedings of the international conference on computational science ICCS 2005 (Atlanta, GA, 2005). Part I (V. S. Sunderam et al. (eds.)), Springer, Lecture Notes in Computer Science, Vol. 3514, pp.50–57 (2005)Google Scholar
  7. 7.
    Bridges T.J., Derks G., Gottwald G. (2002). Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Physica D 172:190–216CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Brin L. (1998). Numerical testing of the stability of viscous shock waves. Doctoral thesis, Indiana University, USAGoogle Scholar
  9. 9.
    Brin L. (2001). Numerical testing of the stability of viscous shock waves. Math Comp 70(235):1071–1088CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Brin L., Zumbrun K. (2002). Analytically varying eigenvectors and the stability of viscous shock waves. Mat Contemp 22:19–32zbMATHMathSciNetGoogle Scholar
  11. 11.
    Chern J.L., Dieci L. (2000). Smoothness and periodicity of some matrix decompositions. SIAM J Matrix Anal Appl 22:772–792CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Coddington E.A., Levinson N. (1955). Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New YorkzbMATHGoogle Scholar
  13. 13.
    Demmel J.W., Dieci L., Friedman M.J. (2000). Computing connecting orbits via an improved algorithm for continuing invariant subspaces. SIAM J Sci Comput 22:81–94CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dieci L., Eirola T. (1999). On smooth decompositions of matrices. SIAM J Matrix Anal Appl 20:800–819CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dieci, L., Eirola, T.: Applications of smooth orthogonal factorizations of matrices. In: Numerical methods for bifurcation problems and large-scale dynamical systems (Minneapolis, MN, 1997), Berlin Heidelberg New York: Springer 2000 IMA Vol Math Appl, Vol.119, pp. 141–162Google Scholar
  16. 16.
    Dieci L., Friedman M.J. (2001). Continuation of invariant subspaces. Numer Lin Alg Appl 8:317–327CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gardner R., Zumbrun K. (1998). The Gap Lemma and geometric criteria for instability of viscous shock profiles. Comm Pure Appl Math 51:797–855CrossRefMathSciNetGoogle Scholar
  18. 18.
    Golub G.H., Van Loan C.F. (1996). Matrix computations. Johns Hopkins University Press, BaltimorezbMATHGoogle Scholar
  19. 19.
    Goodman J. (1986). Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch Ration Mech Anal 95:325–344CrossRefzbMATHGoogle Scholar
  20. 20.
    Goodman, J.: Remarks on the stability of viscous shock waves. In: Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990). Philadelphia: SIAM, pp. 66–72 (1991)Google Scholar
  21. 21.
    Kapitula T., Sandstede B. (1998). Stability of bright solitary-wave solutions to perturbed nonlinear Schrvdinger equations. Physica D 124:58–103CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kato T. (1985). Perturbation theory for linear operators. Springer, Berlin Heidelberg NewYorkGoogle Scholar
  23. 23.
    Keller H.B. (2001). Continuation and bifurcations in scientific computation. Math Today 37:76–83MathSciNetGoogle Scholar
  24. 24.
    Lord G.J., Peterhof D., Sandstede B., Scheel A. (2000). Numerical computation of solitary waves in infinite cylindrical domains. SIAM J Numer Anal 37:1420–1454CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Mascia C., Zumbrun K. (2002). Pointwise Green’s function bounds and stability of relaxation shocks. Indiana Univ Math J 51:773–904CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Mascia, C., Zumbrun, K.: Pointwise Green’s function bounds for shock profiles with degenerate viscosity. Arch Ration Mech Anal (in press)Google Scholar
  27. 27.
    Ng B.S., Reid W.H. (1979). An initial value method for eigenvalue problems using compound matrices. J Comput Phys 30:125–136CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Ng B.S., Reid W.H. (1979). A numerical method for linear two-point boundary value problems using compound matrices. J Comput Phys 33:70–85CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Ng B.S., Reid W.H. (1980). On the numerical solution of the Orr-Sommerfeld problem: asymptotic initial conditions for shooting methods. J Comput Phys 38:275–293CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Ng B.S., Reid W.H. (1985). The compound matrix method for ordinary differential systems. J Comput Phys 58:209–228CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Sandstede, B.: Little Compton meeting on Evans function techniques (1998)Google Scholar
  32. 32.
    Sandstede, B.: Stability of travelling waves. In: Handbook of dynamical systems II. Amsterdam: North-Holland, pp. 983–1055 (2002)Google Scholar
  33. 32.
    Stoer J., Bulirsch R. (2002). Introduction to numerical analysis. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  34. 33.
    Zumbrun K. (2004). Stability of large-amplitude shock waves of compressible Navier–Stokes equations. In: Jenssen H.K., Lyng G. (eds) Handbook of mathematical fluid dynamics, vol III. North-Holland, Amsterdam, pp. 311-533Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jeffrey Humpherys
    • 1
  • Björn Sandstede
    • 2
  • Kevin Zumbrun
    • 3
    Email author
  1. 1.Brigham Young UniversityProvoUSA
  2. 2.Department of Mathematics and StatisticsUniversity of SurreyGuild-fordUK
  3. 3.Indiana UniversityBloomingtonUSA

Personalised recommendations