Skip to main content
Log in

Optimal Semi-Iterative Methods for Complex SOR with Results from Potential Theory

  • Original article
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the application of semi-iterative methods (SIM) to the standard (SOR) method with complex relaxation parameter ω, under the following two assumptions: (1) the associated Jacobi matrix J is consistently ordered and weakly cyclic of index 2, and (2) the spectrum σ(J) of J belongs to a compact subset Σ of the complex plane \(\mathbb{C}\), which is symmetric with respect to the origin. By using results from potential theory, we determine the region of optimal choice of \(\omega \in \mathbb{C}\) for the combination SIM–SOR and settle, for a large class of compact sets Σ, the classical problem of characterising completely all the cases for which the use of the SIM-SOR is advantageous over the sole use of SOR, under the hypothesis that \(\sigma (J)\subset\Sigma\). In particular, our results show that, unless the outer boundary of Σ is an ellipse, SIM–SOR is always better and, furthermore, one of the best possible choices is an asymptotically optimal SIM applied to the Gauss–Seidel method. In addition, we derive the optimal complex SOR parameters for all ellipses which are symmetric with respect to the origin. Our work was motivated by recent results of M.Eiermann and R.S. Varga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dancis, J.: The optimal ω is not best for the SOR iteration method. Linear Algebra Appl 154/156, 819–845 (1991)

    Google Scholar 

  2. Driscoll T.A., Toh K.-C., Trefethen L.N. (1998). From potential theory to matrix iterations in six steps. SIAM Rev. 40(3):547–578

    Article  MATH  MathSciNet  Google Scholar 

  3. D’Sylva, E., Miles, G.A.: The S.S.O.R. iteration scheme for equations with σ1 ordering. Comput J 6, 366–367 (1963/1964)

    Google Scholar 

  4. Eiermann M., Niethammer W. (1983). On the construction of semi-iterative methods. SIAM J Numer Anal 20(6):1153–1160

    Article  MATH  MathSciNet  Google Scholar 

  5. Eiermann M., Varga R.S. (1993). Is the optimal ω best for the SOR iteration method?. Linear Algebra Appl 182:257–277

    Article  MATH  MathSciNet  Google Scholar 

  6. Eiermann, M., Varga, R.S.: Optimal semi-iterative methods applied to SOR in the mixed case. In: Numerical linear algebra (Kent, OH, 1992), pp 47–73. Berlin: de Gruyter 1993

  7. Eiermann M., Niethammer W., Varga R.S. (1984). A study of semi-iterative methods for nonsymmetric systems of linear equations. Numer Math 47(4):505–533

    Article  MathSciNet  Google Scholar 

  8. Eiermann M., Li X., Varga R.S. (1989). On hybrid semi-iterative methods. SIAM J Numer Anal 26(1):152–168

    Article  MATH  MathSciNet  Google Scholar 

  9. Gaier D. (1987). Lectures on complex approximation. Birkhäuser Boston, Boston, MA. (Translated from the German by Renate McLaughlin)

    MATH  Google Scholar 

  10. Halmos P.R. (1974). Finite-dimensional vector spaces, 2nd edn. Springer, Berlin Heidelberg New York (Undergraduate Texts in Mathematics)

    MATH  Google Scholar 

  11. Henrici P. (1988). Applied and computational complex analysis, vol 1. Wiley, New York

    Google Scholar 

  12. Hu M., Jackson K., Janssen J., Vandewalle S. (1997). Remarks on the optimal convolution kernel for CSOR waveform relaxation. Adv Comput Math 7(1–2):135–156

    Article  MATH  MathSciNet  Google Scholar 

  13. Janssen J., Vandewalle S. (1997). On SOR waveform relaxation methods. SIAM J Numer Anal 34(6):2456–2481

    Article  MATH  MathSciNet  Google Scholar 

  14. Kahan W. (1958). Gauss–Seidel methods of solving large systems of linear equations. PhD Thesis, University of Toronto, Toronto, Canada

    Google Scholar 

  15. Kjellberg, G.: On the convergence of the successive over-relaxation applied to a class of linear systems of equations with complex eigenvalues. Technical report, Ericsson Technics Stockholm 1958

  16. Kredell B. (1962). On complex successive overrelaxation. BIT 2:143–152

    Article  MATH  MathSciNet  Google Scholar 

  17. Lumsdaine A., Wu D. (2003). Krylov subspace acceleration of waveform relaxation. SIAM J Numer Anal 41(1):90–111

    Article  MATH  MathSciNet  Google Scholar 

  18. Lynn M.S. (1964). On the equivalence of SOR, SSOR and USSOR as applied to σ1-ordered systems of linear equations. Comput J 7:72–75

    Article  MATH  MathSciNet  Google Scholar 

  19. Novati P. (2003). A polynomial method based on Fejér points for the computation of functions of unsymmetric matrices. Appl Numer Math 44(1–2):201–224

    Article  MATH  MathSciNet  Google Scholar 

  20. Ransford T. (1995). Potential theory in the complex plane, volume 28 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge

    Google Scholar 

  21. Reichelt M.W., White J.K., Allen J. (1995). Optimal convolution SOR acceleration of waveform relaxation with application to parallel simulation of semiconductor devices. SIAM J Sci Comput 16(5):1137–1158

    Article  MATH  MathSciNet  Google Scholar 

  22. Saff, E.B., Totik, V.: Logarithmic potentials with external fields, volume 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin Heidelberg New York: Springer, 1997 (Appendix B by Thomas Bloom)

  23. Varga R.S. (1957). A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials. J Soc Indust Appl Math 5:39–46

    Article  MATH  MathSciNet  Google Scholar 

  24. Varga R.S. (2000). Matrix iterative analysis, volume 27 of Springer Series in Computational Mathematics. Springer, Berlin Heidelberg New York (revised and expanded edition)

    Google Scholar 

  25. Walsh, J.L.: Interpolation and approximation by rational functions in the complex domain, 4th edn. American mathematical society colloquium publications, vol. XX. Providence, RI: American Mathematical Society, 1965

  26. Wrigley, H.E.: Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex. Comput J 6, 169–176 (1963/1964)

    Google Scholar 

  27. Young D.M. (1950). Iterative methods for solving partial differential equations of elliptic type. PhD Thesis, Harvard University, Cambridge, MA

    Google Scholar 

  28. Young D.M. (1954). Iterative methods for solving partial difference equations of elliptic type. Trans Amer Math Soc 76:92–111

    Article  MATH  MathSciNet  Google Scholar 

  29. Young D.M. (1971). Iterative solution of large linear systems. Academic, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Stylianopoulos.

Additional information

Dedicated to Professor Richard S. Varga in recognition of his substantial contributions to the subject of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjidimos, A., Stylianopoulos, N.S. Optimal Semi-Iterative Methods for Complex SOR with Results from Potential Theory. Numer. Math. 103, 591–610 (2006). https://doi.org/10.1007/s00211-006-0002-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0002-9

Keywords

Mathematics Subject Classification (1991)

Navigation