Skip to main content
Log in

An axiomatic approach to scalar data interpolation on surfaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We discuss possible algorithms for interpolating data given on a set of curves in a surface of 3. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The Absolutely Minimizing Lipschitz Extension model (AMLE) is singled out and studied in more detail. We study the correctness of our numerical approach and we show experiments illustrating the interpolation of data on some simple test surfaces like the sphere and the torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almansa, A., Cao, F., Gousseau, Y., Rougé, B.: Interpolation of digital elevation models using AMLE and related methods. IEEE Trans. Geoscience Remote Sensing 40, 314–325 (2002)

    Google Scholar 

  2. Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 16, IX, 200–257 (1993)

    Google Scholar 

  3. Amira: Amira Visualization and Modeling System. http://www.AmiraVis.com

  4. Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. for Math. 6, 551–561 (1967)

    Google Scholar 

  5. Aronsson, G.: On the partial differential equation u x 2 u xx + 2u x u y u xy + u y 2 u yy = 0. Ark. for Math. 7, 395–425 (1968)

  6. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of Absolute Minimizing functions. Bull. Amer. Math. Soc. 41, 439–505 (2004).

    Google Scholar 

  7. Ballester, C., Caselles, V., Sapiro, G., Solé, A.: Morse Description and Morphological Encoding of Continuous Data. Multiscale Modeling and Simulation 2, 179–209 (2004).

  8. Barles, G., Busca, J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zero-order term. Comm. Partial Differential Equations 26, 2323–2337 (2001)

    Google Scholar 

  9. Battacharya, T., DiBenedetto, E., Manfredi, J.: Limits as p→∞ of Δ p u p = f and related extremal problems. Rendiconti Sem. Mat. Fascicolo Speciale NonLinear PDEs, Univ. di Torino, 1989, pp. 15–68

  10. Bertalmío, M., Chen, L.-T.: Stanley Osher and Guillermo Sapiro. Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759–780 (2001)

    Google Scholar 

  11. Cao, F.: Absolutely minimizing Lipschitz extension with discontinuous boundary data. C.R. Acad. Sci. Paris 327, 563–568 (1998)

  12. Carlsson, S.: Sketch Based Coding of Grey Level Images. Signal Processing 15, 57-83 (1988).

    Google Scholar 

  13. Casas, J.R.: Image compression based on perceptual coding techniques. PhD thesis, Dept. of Signal Theory and Communications, UPC, Barcelona, Spain, March 1996

  14. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Processing 7, 376–386 (1998)

    Google Scholar 

  15. Crandall, M.G.: An efficient derivation of the Aronsson Equation. Arch. Rational Mech. Anal. 167, 271–279 (2003)

    Google Scholar 

  16. Crandall, M.G., Evans, L.C., Gariepy, R.: Optimal Lipschitz extensions and the infinity Laplacian. Calculus of Variations and Partial Differential Equations 13, 123–139 (2001)

    Google Scholar 

  17. Crandall, M.G.: Ishii, H. Lions, P.-L.. User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Google Scholar 

  18. Lio, F.D.: Strong Comparison Results for Quasilinear Equations in Annular Domains and Applications. Commum. Partial Differential Equations 27, 283–323 (2002)

  19. Franklin, W.R., Said, A.: Lossy compression of elevation data. 7th Int. Symposium on Spatial Data Handling, 1996

  20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations. Springer Verlag, 1983

  21. Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. Preprint, 2005

  22. Jensen, R.: Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch. Rat. Mech. Anal. 123, 51–74 (1993)

    Google Scholar 

  23. Juutinen, P.: Minimization problems for Lipschitz functions via viscosity solutions. Annales Academiae Scientiarum Fennicae 115, 1998

  24. Kreyszig, E.: Differential Geometry. Dover Publications, Inc., New York, 1991

  25. Petersen, P.: Riemannian Geometry. Springer Verlag, 1998

  26. Sander, O., Caselles, V., Bertalmío, M.: Axiomatic scalar data interpolation on manifolds. Proceedings of the International Conference on Image Processing (ICIP 2003, Barcelona, September 14-17) 3, 681–684 (2003)

  27. Sander, O., Krause, R.: Automatic construction of boundary parametrizations for geometric multigrid solvers. Konrad-Zuse Zentrum für Informationstechnik, Berlin, Germany, no. ZIB Report 03-02, 2003

  28. Willmott, C.J., Rowe, C.M., Philpot, W.D.: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid interpolation and contouring. The American Cartographer 12, 5–16 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Caselles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caselles, V., Igual, L. & Sander, O. An axiomatic approach to scalar data interpolation on surfaces. Numer. Math. 102, 383–411 (2006). https://doi.org/10.1007/s00211-005-0656-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0656-8

Mathematics Subject Classification (2000)

Navigation